Discrete time survival analysis of longevity in a colony of dog guides

J. B. Cole,*,1 B. R. Southey,2 D. E. Franke,3 and E. A. Leighton4 1Animal Improvement Programs Laboratory, Agricutural Research Service, USDA, Beltsville, MD 20705-2350

jcole@aipl.arsusda.gov

²Department of Animal Sciences, University of Illinois, Urbana-Champaign

³Department of Animal Science, Louisiana State University, Baton Rouge

⁴The Seeing Eye, Inc., Morristown, NJ

Objectives

- Development of a model for genetic evaluation of working life
- Variance components estimation for working life
- Calculation of breeding values

Data

- Longevity and pedigree data
 - 954 German shepherds
 - 1,592 Labrador retrievers
- All dogs worked as guides
- Pedigrees complete to founding
- Breeders selected on an index of hip quality and aptitude

Definition of Working Life

- Economics favor some measure of total working life
- Three measures of working life
 - Graduation to 10 yr (TWL)
 - Graduation to 18 mo (EWL)
 - 18 mo to 10 yr (LWL)

Censoring (%) and Working Life (mo)

	GS		LR	
Trait	Censored	WL	Censored	WL
EWL	96.8	56	95.1	67
LWL	49.5	67	44.3	79
TWL	51.1	56	48.9	67

Analysis

- Fixed effects
 - Duration of time interval (mo or yr)
 - Contemporary group
 - Sex of dog
 - Regression on inbreeding
- Random animal effect
- Breeds analyzed separately

Model

$$\lambda(t_i) = g\left(\sum_{j=1}^k x_{ij} \beta_j\right)$$

 $\lambda(.)$ = the discrete hazard function

t_i = the observed time of retirement of individual *i*

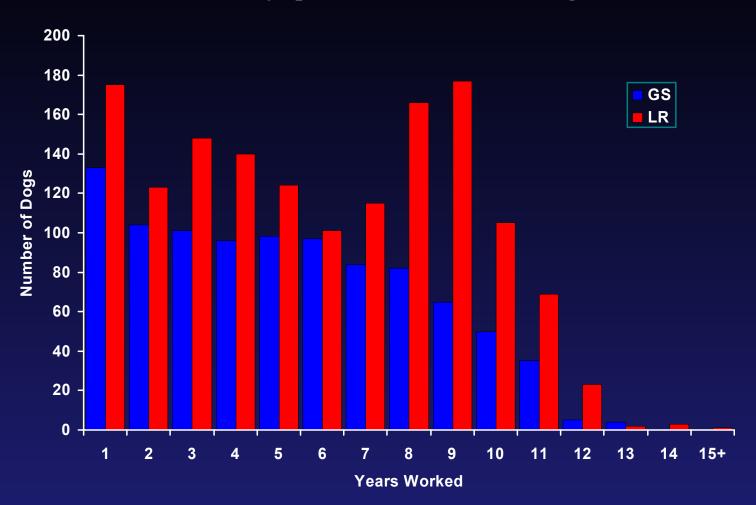
g(.) = link function (logistic or comp log-log)

 x_{ij} = the jth explanatory variable for animal i

 B_j = the regression coefficient associated with the jth explanatory variable

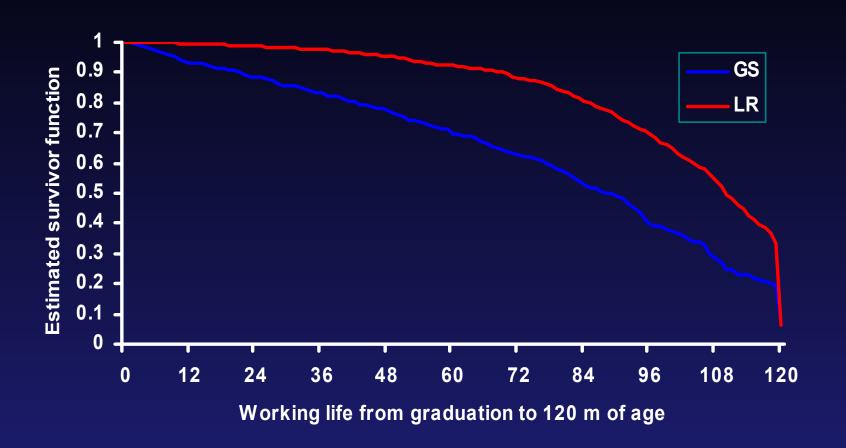
Survival Models

Logistic link


- Proportional odds model
- Variant to duration of the time interval

Complementary log-log link

- Proportional hazards model
- Invariant to duration of the time interval
- Weibull model when log_e of duration of the time interval is fit as a covariate



Phenotypic Working Life

Kaplan-Meier Estimated Survival Functions

Variances - Early Working Life (GS)

Model	σ_a^2	σ_p^2	h ²
Proportional odds	0.3	3.6	0.09
Proportional hazards	0.2	1.9	0.12
Weibull	0.5	2.1	0.22

Variances - Early Working Life (LR)

Model	σ_a^2	σ_p^2	h ²
Proportional odds	0.4	3.7	0.12
Proportional hazards	0.3	1.9	0.15
Weibull	1.1	2.7	0.39

Variances - Later Working Life (GS)

Model	σ_a^2	σ_p^2	h ²
Proportional odds	0.6	3.9	0.16
Proportional hazards	0.7	2.3	0.29
Weibull	0.6	2.3	0.28

Variances - Later Working Life (LR)

Model	σ_a^2	σ_p^2	h ²
Proportional odds	1.1	4.4	0.25
Proportional hazards	1.2	2.9	0.42
Weibull	1.2	2.8	0.42

Unequal Use of Parents (GS)

Sires

- 23 known sires with 767 offspring
- 3 had > 100 progeny
- * 3 had > 50 progeny
- 9 had < 20 progeny</p>

Dams

- 94 known dams
- * 3 had > 20 progeny
- Inbreeding 0.14 ± 0.001, 0.0 0.38

Unequal Use of Parents (LR)

Sires

- 41 known sires with 1,187 offspring
- 5 had > 100 progeny
- 2 had > 50 progeny
- 9 had < 20 progeny</p>

Dams

- 99 known dams
- 17 had > 20 progeny
- Inbreeding 0.07 ± 0.001, 0.0 0.25

Summary

- The discrete time method produced large estimates of heritability and allowed use of an animal model
- EBV for early working life may be biased due to censoring
- Results may reflect founder effects due to the small number of sires

