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Abstract

Genomic selection (GS) has profoundly changed dairy cattle breeding in the last
decade and can be defined as the use of genomic breeding values (GEBV) in selection
programs. The GEBYV is the sum of the effects of dense DNA markers across the whole
genome, capturing all the quantitative trait loci (QTL) that contribute to variation in a
trait. This technology was successfully implemented in many countries as the United
States, Canada, New Zealand, Australia and many other with very promising results.
The GEBV reliability depends on estimation procedures and models. The different
methodologies to estimate SNP effect and GEBV have been extensively tested for
many research groups with very promising results. Although the GS success, many
challenges still remain, including integration of GEBV into genetic evaluation programs
and increasing GEBV reliability.
The aim of this review is to discuss the main aspects involved with GS, including
different methodologies of imputation, SNP effect estimation, and the most important
impacts of GS implementation in dairy cattle.
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Introduction

The use of DNA marker for genetic improvement of dairy cattle was first
suggested by Smith in the late 1960s (Smith, 1967), particularly for traits that are
difficult to improve in conventional breeding programs because of low heritabilities or
difficult-to-measure phenotypes. Affordable high-speed genotyping of large numbers of
single nucleotide polymorphisms (SNP) became affordable for dairy cattle late in 2007,
which permitted the development of genomic selection programs as originally
described by Nejati-Javaremi et al. (1997) and expanded by Meuwissen et al. (2001).

In addition to increasing rates of genetic improvement and reducing costs of
progeny testing (Meuwissen et al., 2001; Schaeffer, 2006), genomic evaluations
produce estimates of the contributions of individual markers to additive genetic merit.
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The rapid adoption of this technology has caused profound changes in the dairy cattle
industry (Stock and Reents, 2013).

Two major technological advances were critical to the implementation and
success of GS. The first was the completion of the bovine genome sequence and
publication of the reference assembly, which was the basis for accelerated research
progress and allowed the identification of several thousands of DNA markers, known as
SNP (Elsik et al., 2009). The second one was the development of low-cost SNP chips
containing thousands of markers, which enabled the estimation highly accurate
breeding values when combined with phenotypic and pedigree data (Meuwissen,
2001).

In a broad sense, GS can be defined as the use of genomic breeding values
(GEBV) to make selection decisions. The GEBV can be derived as the sum of the
effect of markers across the genome, thereby potentially capturing all the quantitative
trait loci (QTL) that contribute to variation in a trait. Reliable estimation procedures are
needed for the estimation of allele substitution effects of each SNP for a trait (Hayes et
al., 2009; VanRaden, 2008).

According to Schaeffer (2006), one of the main benefits of using GEBV in dairy
cattle breeding programs is that selection can be made early in life, sometimes before
an animal is born, reducing the generation interval. This can potentially double the rate
of genetic gain. In addition, more reliable information about cows can be obtained,
which may result in greater genetic progress through the dams of cows selection path
(Van Tassell and Van Vleck, 2001).

The objective of this article is to review the principal aspects of GS in dairy cattle,
including the most popular methods for GEBV estimation, genotype imputation,

potential applications, and future perspectives.

Base of genomic analyses in Dairy Cattle: Linkage Disequilibrium,

Haplotype and Persistency



In the last decade, the dairy quantitative traits began to be studied and even
selected in many different breeding programs, with the aid of molecular markers. The
markers can be direct, exactly marking the causative mutation of a gene, or indirect,
marking regions that are nearest to the causative mutation or regions related to these
mutations in only a few families (Dekkers, 2004). When working with large SNP panels
to analyze quantitative traits most markers will be indirect, but in linkage with causal
mutations (Dekkers, 2004). When markers are in linkage with the causative mutations,
there is the possibility of recombination between the two. Recombination is a
phenomenon that occurs during the formation of gametes (sperm and ovum) and
involves the random exchange of genetic material between homologous chromosomes
(Griffiths et al., 2009). The occurrence of recombination between two loci is
proportional to the physical distance between them on the chromosome. Thus, the
smaller the distance between two loci, the slower it will get to equilibrium of the
expected genotype frequencies of these loci, under generations of random mating. The
linkage disequilibrium (LD) measure will then indicate a nonrandom association
between two loci considered, based on their genotypic and allelic frequencies
(Falconer and Mackay, 1996). The main cause of LD is the "linkage" between loci
because of physical proximity. Genomic selection exploits the linkage disequilibrium
(LD) between markers, since it assumes that the effects of the analyzed chromosomal
segments also represent the LD between the marker and a possible quantitative trait
locus (QTL) (de Roos et al., 2008). The extent, distribution, and decay of LD in a
population must be characterized before a genomic selection program is implemented.

Studies based on SNPs showed high LD over short distances as reported by
McKay et al. (2007) and Bohamanova et al. (2011). Other authors, such as Khatkar et
al. (2008) and Qanbari et al. (2010), observed r* = 0.2 in Holsteins for distances less
than than 100 kb. Santos et al. (2013), working with a panel of 54,000 SNPs, reported
r? of 0.15, 0.17, and 0.17 for Guzerat (n = 1025), Gyr (n = 1959), and Sindhi (n = 116),
respectively. The variation in the extent of LD published depends on several factors,
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including breed history and population structure (e.g., effective population size) that
negatively influence LD (Hayes et al., 2003); the sample size, which can lead to
overestimation in small populations (Yan et al., 2009); the density and distribution of
markers; the method used to construct haplotypes; the stringency of SNP filtering (e.g.,
allele frequency thresholds and Hardy-Weinberg equilibrium); and the use of maternal
haplotypes or both maternal and paternal haplotypes (Bohamanova et. al., 2011).

These results indicate that SNP density alone is sufficient to provide LD
between chromosome segments determined for prediction of GEBYV, especially when
the inter-marker distances are less than 100 Kb (r* is moderate to high). When
proposing GS in its current form, Meuwissen et al. (2001) used adjacent markers with
r? > 0.20 indicating that this LD may explain the variation of the QTL. Callus et al.
(2008) used simulated data to evaluate the effect of average r* between adjacent pairs
of markers on the accuracy of genomic selection (correlation of true breeding values
and to GEBV group of animals validation). They found that the accuracy of GEBV
increased from 0.68 to 0.82 when the average r* increased from 0.1 to 0.2. Based on
those results, de Roos et al. (2008) estimated that a panel of at least 50,000 SNPs
would be necessary to achieve and r* = 0.20 between adjacent markers, which is
needed to support efficient GS. Another important use for the LD is the construction of
haplotypic blocks and their diversity. These blocks can be used as units for genomic
analysis rather than the SNP (Calus et al. 2008), in imputation algorithms (Browning
and Browning, 2009), and in genomic detection of lethal alleles (VanRanden et al.,
2011). According to Khatkar et al. (2007), haplotypes are chromosomal regions of high
LD and normally have low diversity, typically accounting for regions of low
recombination flanked by hotpots of recombination. Generally, the structure provided
by the effective size between the breeds, as well as the number of markers used, can
influence the assembly of haplotypic blocks.

When LD is estimated in different populations using the same SNPs it is
possible to study the persistence of phase (PS) between them. PS refers to how much
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a chromosomal segment is unchanged over a given physical distance in different
subpopulations, breeds, or species. This measure is based on the correlations of r?
between two populations, along with physical distances (de Roos et al., 2008). Since
PS is related to the accuracy of genome-wide association studies (GWAS) and GEBVs
between populations (de Roos et al., 2008), it is possible to evaluate the feasibility of a
multibreed genomic evaluation using this measure. Silva et al. (2013) working with Gyr,
Guzerat, and Sindhi obtained correlations ranging from 0.40 to 0.56 for 100 kb
distances, with an intense decline of PS, suggesting low efficiency for multibreed
evaluation based on common SNP effects estimates for the 3 breeds. Despite the low
PS observed in some cases, the increased density of the SNP panel markers, may
consider high phase correlation between pairs of markers at small distances, as well as
the largest LD between markers, making possible the multibreed analyses based on

the same SNP effects.

Traditional marker-assisted selection and genome selection evaluation:

efficiency, profitability and use of (pseudo-) phenotype

Progress in animal breeding programs is achieved through the selection of
superior individuals for mating. An animal’s superiority is generally based on its ranking
on the basis of genetic merit. The accuracy of evaluation methods is one of the main
components that determines rate of genetic gain in a population. Initially, evaluations
were based only on phenotypes, i.e., the animals that had better performance were
chosen for mating, or in the case of milk production, the sons of the most productive
cows. Breeding values were obtained by multiplication of phenotypic deviations from
the herd average with heritability.

In the latter half of the 20™ century, selection index methodology was introduced
by Hazel and Lush (1943). This methodology considered the relationship between
phenotypic measures, as well as the genetic relationships between animals with

phenotypes (selection criteria to be used - in the present left hand) and the individuals
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being evaluated (objective selection - present in the right hand). With this method it
was possible to combine many sources of information into a single breeding objective.
In the indices the main properties would decrease the prediction error, maximizing the
correlation between the estimated and true (accurate) genetic value and maximizing
the probability of correct classification for the predicted genetic value. Thus, there was
an increase in accuracy by aggregating information collaterally other animals. From this
methodology we started to give greater importance to the pedigree of animals for use
in analysis beyond parent - offspring relationships.

With the development of mixed model methods by Henderson (1949) genetic
evaluations began to provide more accurate estimates of breeding value. First, through
sires model that considered sire-progeny relationships, and then through the animal
model, which considered all known relationships among animals in the pedigree. Using
this methodology it is possible to simultaneously estimate fixed effects (BLUE - Best
Linear Unbiased Estimator) and random (BLUP - Best Linear Unbiased Prediction).
Thus, the BLUP solution is obtained for all animals present in the pedigree. This
methodology has similar statistical properties to selection index, but directly produces
estimated breeding values, unlike selection index, in which index weights and breeding
values are produced in separate steps. Estimated breeding values (EBV) were widely
adopted as a selection tool in breeding programs, where they are commonly presented
as predicted transmitting abilities (PTA), which are one-half of EBV.

The use of molecular marker information to increase accuracy and reduce
generation intervals has been studied in recent decades, and implemented in a limited
fashion in some breeding programs. Marker-assisted selection (MAS) was applied in
dairy cattle for the pre-selection of animals, and to select young bulls for entry intob
progeny testing programs (Kashi et al., 1990; Mackinnon and Georges, 1998). MAS
simultaneously uses phenotypic information and data about molecular markers in LD
with QTLs, and was adopted to increase annual genetic gain for traits of economic
importance in several animal species (Dekkers, 2004). In MAS, BLUP estimates of total
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genetic value are obtained that include marker information as fixed or random effects
(Dekkers, 2004), or through an index that combines the two sources of information
using weights can be changed based on the selection objective (Dekkers and van
Arendonk, 1998).

Other molecular alternatives are being widely studied. The first recognizable
presentation of genomic selection was made by Nejati-Javaremi et al. (1997), and the
approach was expanded and popularized by Meuwissen et al. (2001). However, there
was considerable lag between the description of the concept and its widespread
adoption, which did not occur until panels with thousands of single nucleotide
polymorphisms (SNPs) distributed across the the bovine genome became available
(Van Tassell et al. 2008). SNPs are the most abundant DNA polymorphisms in the
genome, and they have become preferred over other types of molecular markers
because they have low mutation rates and genotypes can easily be read automatically
(Romualdi et al. 2002). In GS, the central idea is to not use specific markers for QTLs,
but to use a large number of markers distributed throughout the genome. When many
thousands of markers are used it can reasonably be assumed that there are always
markers located near causal variants, which means that there are SNP in LD with the
QTL (de Ross et al., 2008). The additive genetic merit of an animal can then be
decomposed into a contribution from the markers and a polygenic component that
accounts for the variation not explained by the markers. The marker and polygenic
effects can be estimated using statistical models similar to those used for breeding
value estimation, and performance, pedigree, and genotype information can be
combined into genomic breeding values (Meuwissen et al., 2001; VanRaden, 2008).
Cole et al. (2009) confirmed than an infinitesimal model is appropriate for most traits of
interest in dairy production, and showed that there are few QTL in the traditional sense
(loci that explain large proportions of phenotypic variance).

Genomic selection does not have the same limitations as MAS, and GS
compared to BLUP provides: 1) predictions of breeding values with greater accuracy,
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particularly for traits that are expressed in one sex or are of low heritability, 2) lower
rates of inbreeding (lesser tendency for family selection), 3) antecipation the selection
process in the case of measured characteristics later in life animals, and 4) facilitate
the evaluation of the traits of difficult to measure or high cost (Daetwyler et al., 2007;
Dekkers, 2007; Muir, 2007; Meuwissen, 2007).

Genomic selection has increased the rate of genetic gain in livestock (Weigel et
al., 2010). The increase in the accuracy of genomic predictions is best observed in
young animals, with no significant changes in the already proven bulls (Schaeffer,
2006). Proofs are used for pre-selection for progeny testing, and also for selection of
animals when they are selected by GEBV in the total genomic evaluation. In didactic
scheme, the genomic proofs for dairy cattle have a flow that involves a reference
population and another population to be selected. Thus, the reference population
consists of animals which have, necessarily, accurate information of the trait. This
population is used as the genetic basis for predicting the effects of markers.

The determination of the reference population, as its size and its constitution,
has great influence on the accuracy of genomic predictions (Hayes et al., 2009;
VanRaden et al., 2009). In the case of dairy herds, the constitution is mainly dependent
on the composition (bulls and cows) and selective genotyping according to the
structure of the response variable. In most countries, only sires, mainly high accuracy
were genotyped and included in the reference population (Loberg and Durr, 2009). For
other side, the use of more accurate information implies the use the best animals as
reference. However, simulation studies of dairy cattle as Jiménez-Monteiro et al. (2011)
concluded that the selection of only females with high estimated breeding values or
yield deviations produced suboptimal results. This study showed that the better
sampling for females are upper and lower extreme values within the distribution of yield
deviations with the usual sampling for males, although these authors have not
evaluated this combination with deviations yield of daughters (DYD) for sires.

One of the first steps for genomic selection is generate the response variable
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for genomics analysis, which depends on the available sources (individual
performance, of the daughters or parents). Different information can be used, from the
phenotype itself, as single records, repeated records, the average of the progeny, or
even the pseudo-phenotypes as DYD (VanRaden and Wiggans, 1991), EBV and
deregressed-EBV (Garrick et al., 2009). For dairy traits, pseudo-phenotypes are
preferred because lactations are sex-limited and only females have phenotypes.
Among these, DYD are the most-used because besides sires have a larger impact on
breeding programs than cows, and their DYDs are more accurate than cow phenotypes
(Calus et al., 2009). The deregressed-EBV can be considered a type of deregressed-
proof (DRPF) when are used sires with information of the high accuracy in the
reference population, because they combine different sources of information about the
sires besides the informations of his daughters. Generally the DRPFs are considered
equivalent to DYD (Sigurdsson et al., 1995). The deregressed-EBV are used in
genomic evaluation of dairy traits when there are cows and bulls in the reference
population. However when using any deregressed pseudo-phenotype there is an
individual increment disproportionate in response variable that leads to the need to
consider the heterogeneity of the residue by statistical models, with weights that range
according to the source used to deregress and effects considered (Garrick et al. 2009).

When using genomic evaluations as criteria for pre-selection of animals to
progeny test it is possible to reduce spending to prove that animals would have low
performance in the test (Hayes et al., 2009), but there is potentially a problem with
preselection bias (Patry and Ducrocq, 2011). Dekkers (2006) reported that rates of
genetic change can be 3 to 4 times higher with GS than under current progeny test
programs, and the savings in logistical costs could be 97% of today’s cost.
Furthermore, genotyping costs are also likely to decrease over time, which would make
the GS easier to administer. Schrooten et al. (2005) reported that genetic progress
increased from 19 to 31% compared to progeny testing, when the molecular markers
explained 50% of the genetic variance. VanRanden et al. (2009) reported that the
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predictive ability for dairy traits using genomic predictions was 50% versus 27% for the
traditional PTA. They also reported that gains for proven bulls were highly significant,
although smaller than the young bulls because of the higher initial reliability of these
bulls. Note that the GS is already applied and showed promising results in many
countries, including the USA, Canada, New Zealand, and the Netherlands (Loberg and
Ddarr, 2009).

Despite these latest innovations in genomics area bring the advantages
described above, the molecular informations also demanded an increase in statistical
and computational resources, limiting the use of such information in many analyzes
including the multi-trait models and test-day models. Although these models are easily
applied by replacing the traditional numerator relationship matrix (A) with the genomic
relationship matrix (G) (Koivula et al, 2012; Tsuruta et al, 2011), has yet didn't get at a
robust analysis of multivariate nature with models that consider different variances for
the markers, this being perhaps one of the greatest prospects for optimization of

genomic analyzes of the dairy traits.

Parentage correction and Pedigree errors

For a successful and comprehensive evaluation of individuals in any breeding
program, correct parentage and pedigree information are essential because pedigree
information is a key part of variance component and breeding value estimations.
Pedigree error rates in dairy cattle breeds have been estimated to average 10 to 12%
average (Banos et al., 2001; Spelman, 2002; Visscher et al., 2002), although reports
from the 1970s to the late 1990s estimated values ranging from 5% to about 22%
(Christensen et al., 1982; Geldermann et al., 1986; Bovenhuis and Van Arendonk,
1991; Ron et al., 1996). The rapid adoption of micro-satellite parentage testing in the
cattle breeding industry probably reduced parentage and pedigree errors, most
commercial (grade) cows are not tested. Although error rates may decreased over the

years, parentage and pedigree inconsistencies of 10 or 11% can lead to reductions in
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genetic gain of 2 to 18% (Banos et al., 2001; Visscher et al., 2002).

Before the advancement in high throughput single nucleotide polymorphism
(SNP) data, blood groups (Stormont, 1967) and mini- and micro- satellite (Kashi et al.,
1990) were the basic means of inferring parentage. Even though micro-satellite are still
used, with the recent availability of SNP markers and with large numbers of sires
(Harris and Johnson, 2010; Weigel et al., 2010; Fritz et al., 2013; VanRaden et al.,
2013b) and dams (Spelman et al., 2013; VanRaden et al., 2013b) genotyped in the
USA, Canada, Australia, New Zealand, Ireland and France among others, parentage
and pedigree errors are increasingly identified using SNP genotypes. McClure et al.
(2012, 2013) have developed methods to impute microsatellite parentage panels from
SNP-based parents panels, which will assist cattle producers as they transition from
microsatellite to SNP genotyping for parental verification.

Parentage assignment is a method aimed at excluding individuals (“exclusion
principle”) from the list of potential parent. This means that, a large number of
“potential” sires and dams are examined and only one or a few individuals are retained
based on their marker data by using simple segregation rules (Kashi et al., 1990;
Hayes, 2011). In addition to marker genotypes, additional accuracy can be achieved if
information of birth date and mating records are considered.

Due to the abundant SNP marker information and the shift from micro-satellite
to small SNP panels, we give a brief description of how SNP information is used to
correct pedigrees and infer potential parents. Initial verification of information (parents)
obtained from pedigree are an be done to detect parent-offspring inconsistencies. If
parent-offspring errors exceeds a certain defined threshold, then loop through the
entire genotype data infer the potential parents. For individuals with no pedigree
information, loop through the entire genotype data directly to obtain potential parent.
The algorithm for detecting and inferring parent offspring conflict is based on Mendelian
inheritance rules (Calus et al., 2011; Hayes, 2011). This means that, for a bi-allelic
SNP, an individual and the prospective parent are both homozygous but for different
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alleles “opposing homozygotes”. eg. If an individual has an A|A genotype, the potential
parent should carry the “A” allele (A|A or A|B), however if the potential parent has B|B
allele for more possible parent offspring conflicts per locus) then they have opposing
homozygous genotype. Looping across all SNP genotypes, the sum of all “opposing
homozygous” is compared to an empirically determined threshold (determined from on
genotype error rate). Furthermore, to avoid picking up monozygotic twins in the
pairwise comparison (parent-offspring check), information from birth years could be
used.

The empirical thresholds are based on the realized distribution of genotyping
errors for all parent-offspring conflict checks. Wiggans et al. (2009), Calus et al. (2011)
and Hayes (2011) all reported similar distribution of Mendelian errors for the Illumina
50K SNP panel. Wiggans et al. (2009) and Calus et al. (2011) used >200 SNPs and
>250 SNPs, respectively, on a 50K panel to exclude parent-offspring conflicts.
However, Hayes (2011) used a stringent threshold of >25 SNPs on 50K SNP panel and
>8 SNPs on a 3K SNP panel. Additionally, unpublished results from Gyr (Brazilian Bos
indicus breed) shows similar distribution when 50K SNP panel was used. The number
of markers within the empirical threshold were <58, however <200 SNP markers were
used as the threshold. The total parent-offspring conflict observed was about 8% in Gyr
and we could infer potential parent for about 2% of these errors. Calus et al. (2011)
removed 230 individuals with parent-offspring conflict. Fisher et al. (2009) reported
that, about 40 highly polymorphic SNP markers (MAF>0.35) and on-farm information
about birth dates and mating periods were needed to correctly assign parentage
without any unambiguity.

Using SNP data, (i) recent ancestors errors, (ii) maternal grandsire errors, and
(iii) full- and half-sibling errors could also be corrected (Wiggans et al., 2009; Calus et
al., 2011; VanRaden et al., 2013a). The reduction in parentage and pedigree errors
would go a long way to help reduce the loss in genetic gain (Banos et al., 2001;
Visscher et al., 2002) and potentially decrease inbreeding. We conclude that, although
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there is a dearth of knowledge on the current pedigree errors detected using SNP data
in dairy cattle populations, the supposed reason been, the lack of interest in publishing
pedigree errors, however, most publish materials on genomic related research
(genomic selection, GWAS, etc.) undertake this key component before performing their

analysis.

Principal traits selected in a Dairy Breeding program and their results with
genomic selection analyses.

Since 2009, the United States in collaboration with Canada has published
genomic evaluations based on BovineSNP50 genotypes. More recently these two
countries included lllumina's Bovine3K chip genotypes in their GEBV estimations,
increasing enormously the number of genomically evaluated animals (VanRaden et al.,
2011a). Many countries like Australia, New Zealand, Germany, Switzerland and many
others also implemented GS on their breeding programs and encouraged widespread
use of young genomically evaluated bulls (Wiggans, 2011). Hutchison et al. (2014)
have recently shown that the heavy use of genomically evaluated young bulls in the US
has greatly reduced the generation interval and improved the rate of genetic gain. The
average age of sires of Holstein bulls born in 2012 was 2.7 yr younger than those
males born in 2006, and 1.3 yr younger for females. This indicates that dairy producers
are willing to use semen from young bulls that rank highly rather than use lower-
ranking bulls with progeny tests.

One of the most important requirements for GS implementation is the use of a
large reference or training population that include animals with both phenotype and
genotype information, thus all the traits routinely evaluated on commercial breeding
programs are able to have their GEBV estimated. In the United States, more than 30
traits traditionally estimated and related to health, yield, and fertility of dairy cattle have
their GEBV available, including net merit, milk yield, protein yield, fat yield, protein
percentage, fat percentage, productive life, somatic cell score and daughter pregnant
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rate (VanRaden et al. 2009; Weigel et al. 2010).

Previous results of GS from Australia for protein yield, protein percentage,
fertility, Australian Profit Ranking and Australian Selection Index, demonstrated that
GEBYV reliabilities estimated with Bayes A and BLUP methodologies were in a range of
0.14 to 0.48 and 0.18 to 0.44, respectively. The reliabilities of GEBV were considerably
greater than traditional EBV estimations even with a small size reference population
(approximately 600 animals) (Hayes et al., 2009).

More recent results from Australian Dairy Futures Cooperative Research
Centre’s demonstrated that the expansion of reference population to 10,000 Holstein
and 4000 Jersey cows, could lead to 0.04 t00.08 improvement in the reliability of
breeding values depending on the trait (Pryce et al., 2012a).

In a similar study conducted by LIC (Livestock Improvement Corporation) in
New Zealand, GEBV for milk production traits, live birth weight, fertility, somatic cell
counts and longevity presented reliabilities for young bulls with no daughter information
between 0.50 to 0.67, indicating a increase in the rate of genetic trend above than 50%
if compared with traditional EBV (Harris et al., 2008).

As milk production becomes increasingly specialized and competitive, selection
objectives will need to include traits related to profitability and animal efficiency. To
meet this goal, new traits, not traditionally measured by breeding programs, are been
evaluated for inclusion in selection programs, such as feed efficiency (De Haas et al.,
2012), methane emission (Wall et al., 2010), energy balance (Verbyla et al., 2010),
disease resistance (Kirkpatrick et al., 2011; Parker Gaddis et al., 2014), novel fertility
traits (Cochran et al., 2013a, 2013b), resistance to heat stress (Dikman et al., 2013),
and calf birth weight (Cole et al., 2014). One of the restrictions of the introduction of
novel traits on GS is the low accuracies of the estimations due to small to moderate
size of the reference population.

Calus et al., 2013 evaluating a novel trait with heritability ranging between 0.05
and 0.30 and a moderate size reference population demonstrate that although the
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accuracies are low (0.15 and 0.43 for traits with heritabilities of 0.05 and 0.30,
respectively), the selection response could be substantial depending on the heritability
and economic value of the new trait and the genetic correlation with the current
breeding goal. Accordingly, to achieve accuracies acceptable in dairy cattle breeding

programs, the reference population should be larger.

Imputation results on genomic evaluation

The increase in genetic gain and accuracy of prediction using genomic
information have been discussed extensively under section 3. Even though the price of
genotyping individuals for the implementation was high about a decade ago, the
promise of doubling genetic gain at a lower cost than progeny testing (Schaeffer, 2006)
was enough incentive to genotype bulls on the then 50K lllumina SNP panel
(Matukumalli et al., 2009). However, the extended cost that came along with the
requirement of increasing the reference population (training set) and genotyping
selection candidate facilitated the need to use alternative SNP panels that were
cheaper and preferably efficient for genomic selection. Additionally, the accurate in-
silico genotyping (Imputation) of SNP markers in the field of human genetics gave a
unique perspective into how genotyping cost could be drastically reduced (Browning
and Browning, 2007, 2009; Howie et al., 2009).

Genotype imputation uses population-based linkage disequilibrium (LD), family-
based linkage information or a combination of both, to infer genotypes at un-typed
marker loci. Population-based imputation algorithms were developed mainly to explore
and capture LD information without using a prior family information which might not be
available. These methods are very popular in the human genetics field, however it is
also heavily used in the field of animal genetics. The most prominent population-based
software includes Beagle (Browning and Browning, 2007, 2009), Impute2 (Howie et al.,
2009), MaCH (Li et al., 2010), fastphase (Scheet and Stephens, 2006), and PLINK
(Purcell et al., 2007). On the other hand, family-based or a combination of population

16



and family based imputation algorithms have been developed in the field of animal
genetics. These algorithms uses a priori, the family information and subsequently LD
information to infer un-typed markers. Commonly used software includes
PHASEBOOK (LinkPHASE and DAGPHASE) (Druet and Georges, 2011), Fimpute
(Sargolzaei et al., 2012), Alphalmpute (Hickey et al., 2011), Findhap (VanRaden et al.,
2011a), and PEDIMPUTE (Nicolazzi et al., 2013).

In dairy cattle breeding programs, to reduce genotyping cost, the lllumina
Bovine3K BeadChip (~2,900 SNPs) (lllumina Data Sheet, 2011) and lllumina Bovine7K
BeadChip (~6,900 SNPs) (Boichard et al., 2012) were developed. Imputation
accuracies from a lower density SNP panel to higher density SNP panels have been
pretty accurate. Dassonneville et al. (2011) reported imputation error rate (allelic error
rate) of 3.9%, when they imputed from 3K to 50K in French Holstein (reference
population = 3,071; validation set = 966) using a combination of Beagle v2.1.3 and
DAGPHASE. They also reported 5.5% error rate for Holstein bulls of the three Nordic
countries (reference population = 3,058; validation set = 1,086). Increasing the
Reference population with bulls from the EuroGenomics consortium reduced error rate
to 2.1% in the French Holstein and 4.0% in Holstein bulls from the Nordic countries.
Sargolzaei et al. (2011) also reported imputation error rate (imputing 3K to 50K)
between 2.2% to 4.1% in three Canadian dairy cattle breeds (Hosltein, Jersey and
Brown Swiss). Error rate was lower (between 0.53% to 1.03%) when the 7K SNP panel
was used. Khatkar et al. (2012) also reported error rate of about 3.3% for Australian
Holstein using Impute2. Recently, Ma et al. (2013) reported allelic error rate of 3.7% in
Swedish and Finish Red dairy cattle for imputing 3K to 50K using beagle v3.3. Studies
from three Italian dairy cattle breeds (Hosltein, Brown Swiss and Simmental) by
Dimauro et al. (2013) showed a lower allelic imputation error rate for imputing 50K from
3K and 7K compared to the results presented above. Error rate were about 10% for 3K
and 5% for HD using Beagle v3.3. Others studies with varying subset of the 50K SNP
markers shows error rate of about 2% to 8% (Weigel et al., 2010; Khatkar et al., 2012).
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The above studies have been done using Bos taurus breeds, however, initial
imputation results from Gyr, an important Bos indicus dairy cattle breed of Brazil shows
slightly higher allelic error rate (7.0% for 3K and 4.0% for 7K using Beagle v4) than the
Bos taurus breeds (Boison et al. (2014a), accepted accepted for the Proceedings of
EAAP 2014). Differences in population structure, number of animals in reference
population, choice of imputation algorithms or softwares have been explicitly shown to
account for the observed differences across studies. Furthermore, the higher allelic
error rate observed for Bos indicus breeds might also be due to ascertainment bias of
the 3K, 7K and 50K lllumina SNP panels. This results in a small number of markers left
on the lower density SNP panel (< 2,000 for 3K and < 5,000 for 7K) as tag SNPs with
large inter-marker distances.

To increase accuracies of genomic breeding values more than what was
observed with the 50K SNP panel for multi-breed genomic, purebreed and crossbreed
evaluations, the BovineHD BeadChip (HD) was introduced. Additionally, the HD SNP
panel was to help reduce the ascertainment bias observed for the 50K in Bos indicus
breeds.

Since most animals were already genotyped on the 50K SNP panel, few but
influential sires were suggested to be genotyped on the HD SNP panel and the rest of
the population imputed. Goddard and Hayes (2009) suggested an algorithm for
efficiently selecting individuals to be genotyped on HD, so that imputation accuracies
for the rest of the population would be high. For most breeds, imputing HD genotypes
from 50K have been high. Khatkar et al. (2012), Brendum et al. (2012), Ma et al.
(2013), Pausch et al. (2013), Schrooten et al. (2014), and Erbe et al. (2012), all have
reported imputation accuracies between nearly zero and 7% when the reference
population used in building haplotype library was at least 1/3 of the validation
population.

However, accuracies of GEBVs of real data for HD genotypes have been shown
to be smaller or sometimes lower than expected in comparison to using the 50K SNP
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panel (Erbe et al., 2012; Hayes et al., 2012; Su et al., 2012) regardless of the trait and
method of prediction for Bos taurus breeds. Initial results in Guzerat;, a Bos indicus
dairy cattle breed of Brazil, shown an increase in accuracies of about 4-12% for milk,
fat and protein yield in kg (Boison et al. (2014b), accepted for the Proceedings of
WCGALP 2014). The differences in the result might be attributed to the right-skewed
nature (lot of markers in low frequency due to ascertainment bias) of the minor allele
frequency distribution for the 50K observed in most Bos indicus breeds. The HD SNP
panel, on the other hand, has markers with high MAF.

Interestingly, effect of imputation on “overall” estimate of accuracies of breeding
values have been very little for imputing 7K to 50K (Khatkar et al., 2012; Dimauro et al.,
2013) and 50K to HD (Khatkar et al., 2012; Su et al., 2012), substantially lower for 3K
to 50K (Dassonneville et al., 2011; Dimauro et al., 2013). The great reduction in
accuracies of GEBV for the 3K to 50K have been attributed to the lower imputation
accuracies observed, compared to the imputation accuracies obtained for 7K to 50K
and 50K to HD. Low-density genotypes also are most commonly available for young
animals with no phenotypes or cows with few phenotypes available, and the resulting
low-accuracy PTA may be more responsible for the small gain, rather than the chip
itself. Recently, Druet et al. (2014), have shown with a simulation study that, using
imputed sequence data might follow the same trend like the imputed HD (very little loss
in accuracy of GEBV). However, they point out in their paper that, effect of QTLs in low
frequency might be estimated with lower accuracy than using actual sequence data.

The results from the studies available, suggests that, imputing genotypes from

7K to 50K; 50K to HD is feasible and accurate enough for genomic evaluations.

Other uses of genomic information

There are a number of applications for genomic information other than the
prediction of high-reliability breeding values. Perhaps the most prominent recent
application is the use of haplotypes in combination with next-generation sequencing
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data to identify causal variants associated with recessives. The methodology for
identifying recessive haplotypes by searching for a deficit of homozygotes was first
described by VanRaden et al. (2011a), and its use in combination with sequence data
to identify a causal variant (APAF1, associated with the HH1 haplotype) was reported
in Adams et al. (2012). Additional details are provided in VanRaden et al. (2012). The
US currently tracks 19 recessive haplotypes, and the causal variant for many of those
conditions is known (Cole et al., 2013).

While in theory genomic selection should result in lower rates of inbreeding
(Daetwyler et al., 2007), that has not proven to be true in practice (e.g., VanRaden et
al.,, 2011b). Sun et al. (2013) have showed that the use of genomic inbreeding
coefficients rather than pedigree inbreeding in mating programs results in decreases in
expected progeny inbreeding, and the economic value of using genomic relationships
is >$3 million per year for US Holsteins when applied to all genotyped females. These
results are consistent with the work of Pryce et al. (2012b), who also found that it is
beneficial to consider genomic inbreeding when allocating mates. However, Cole and
VanRaden (2011) showed that the best chromosomal genotypes generally consist of
two copies of the same haplotype, even after adjustment for inbreeding, underscoring
the tension between strategies that ensure maximal rates of genetic gain versus those
that try to balance selection response against the need to maintain genetic diversity in

the population.

References

Adams, H.A., Sonstegard, T., VanRaden, P.M., Null, D.J., Van Tassell, C., Lewin, H.,
2012. Identification of a nonsense mutation in APAF1 that is causal for a decrease in
reproductive efficiency in dairy cattle. Proc. Plant Anim. Genome XX Conf., abstr.
P0555.

Banos, G., Wiggans, G.R., and Powell, R.L. , 2001. Impact of paternity errors in cow
identification on genetic evaluations and international comparisons. J. Dairy Sci. 84,

20



2523-2529.

Bohmanova, J., Sargolzaei, M., Schenkel, F., 2010. Characteristics of linkage
disequilibrium in North American Holsteins. BMC Genomics 11, 421-432.

Boichard, D., Chung, H., Dassonneville, R., David, X., Eggen, A., Fritz, S., Gietzen,
K.J., Hayes, B.J., Lawley, C.T., Sonstegard, T.S., et al. , 2012. Design of a bovine low-
density SNP array optimized for imputation. PLoS One 7, €34130.

Boison, S.A., Santos, D., Utsunomiya, A., Garcia, F., Verneque, R., Silva, M.V.B., and
Solkner, J. , 2014a. Genotype imputation in Gir (Bos indicus): comparing different
commercially available SNP chips. In Proceeding of EAAP (Book of Abstract), p. 254.
Boison, S.A., Santos, D.J. de A., Garcia, J.F., Solkner, J., Peixoto, M.G.C.D., and Silva,
M.V.G.B. da , 2014b. Genomic Evaluation Using 50K and Imputed HD Genotypes in
Guzera (Bos indicus) Breed. In Proceedings of the WCGALP, (Vancouver, Canada), pp.
3908-3911.

Bovenhuis, H., and Van Arendonk, J. a , 1991. Estimation of milk protein gene
frequencies in crossbred cattle by maximum likelihood. J. Dairy Sci. 74, 2728-2736.
Browning, S.R., Browning, B.L., 2007. Rapid and accurate haplotype phasing and
missing-data inference for whole-genome association studies by use of localized
haplotype clustering. Am. J. Hum. Genet. 81, 1084-1097.

Browning, B.L., and Browning, S.R., 2009. A unified approach to genotype imputation
and haplotype-phase inference for large data sets of trios and unrelated individuals.
Am. J. Hum. Genet. 84, 210-223.

Browning, S.R., Browning, B.L., 2010. High-resolution detection of identity by descent
in unrelated individuals. Amer. J. Human Genet. 86, 526-539.

Brgndum, R.F., Ma, P., Lund, M.S., and Su, G. , 2012. Short communication: genotype
imputation within and across Nordic cattle breeds. J. Dairy Sci. 95, 6795-6800.

Calus, M.P.L., 2009. Genomic breeding value prediction: methods and procedures.
Animal 4, 157-164.

Calus, M.P.L., Meuwissen, T.H.E., de Roos, A.P.W., Veerkamp, R.F., 2008. Accuracy of

21



genomic selection using different methods to define haplotypes. Genetics 178,553-561.
Calus, M.P.L., Mulder, H.A., Bastiaansen, J.W.M., 2011. Identification of Mendelian
inconsistencies between SNP and pedigree information of sibs. Genet. Sel. Evol. 43,
34.

Calus, M.P.L., de Haas, Y., Pszczola, M., Veerkamp, R.F., 2012. Predicted accuracy of
and response to genomic selection for new traits in dairy cattle. Animal 7, 183—-191.
Christensen, L.G., Madsen, P., Petersen, J., 1982. The influence of incorrect sire
identification on the estimates of genetic parameters and breeding values. In
Proceedings of the WCGALP, (Madrid, Spain), pp. 200—208.

Cochran, S.D., Cole, J.B., Null, D.J., Hansen, PJ., 2013a. Discovery of single
nucleotide ploymorphisms in candidate genes associated with fertility and production
traits in Holstein cattle. BMC Genet. 14, 49.

Cochran, S.D., Cole, J.B., Null, D.J., Hansen, P.J., 2013b. Single nucleotide
polymorphisms in candidate genes associated with fertilizing ability of sperm and
subsequent embryonic development in cattle. Biol. Reprod. 89, 69.

Cole, J.B., VanRaden, P.M., 2011. Use of haplotyes to estimate Mendelian sampling
effects and selection limits. J. Anim. Breed. Genet. 128, 448-455.

Cole, J.B., VanRaden, P.M., Null, D.J., Hutchison, J.L., Cooper, T.A., 2013. AIPL
Research Report GENOMIC3: Haplotype tests for recessive disorders that affect
fertility and other traits. Accessed May 8, 2014.
http://aipl.arsusda.gov/reference/recessive haplotypes ARR-G3.html.

Cole, J.B., VanRaden, P.M., O'Connell, J.R., Van Tassell, C.P.,, Sonstegard, T.S.,
Schnabel, R.D., Taylor, J.F., Wiggans, G.R., 2009. Distribution and location of genetic
effects for dairy traits. J. Dairy Sci. 92, 2931-2946.

Cole, J.B., Waurich, B., Wensch-Dorendorf, M., Bickhart, D.M., Swalve, H.H., 2014. A
genome-wide association study of calf birth weight in Holstein cattle using single
nucleotide polymorphisms and phenotypes predicted from auxiliary traits. J. Dairy Sci.
97, 3156-3172.

22



Daetwyler, H.D., Villanueva, B., Bijma, P., Woolliams, J.A., 2007. Inbreeding in
genome- wide selection. J. Anim. Breed. Genet. 124, 369-376.

Daly, M.J., Rioux, J.D., Schaffner, S.F.,, Hudson, T.J., Lander, E.S., 2001. High-
resolution haplotype structure in the human genome. Nature Genet. 29, 229-232.
Dassonneville, R., Brandum, R.F., Druet, T., Fritz, S., Guillaume, F., Guldbrandtsen, B.,
Lund, M.S., Ducrocq, V., Su, G., 2011. Effect of imputing markers from a low-density
chip on the reliability of genomic breeding values in Holstein populations. J. Dairy Sci.
94, 3679-3686.

De Haas, Y., Calus, M.P.L., Veerkamp, R.F., Wall, E., Coffey, M.P., Daetwyler, H.D.,
Hayes, B.J., Pryce, J.E., 2012. Improved accuracy of genomic prediction for dry matter
intake of dairy cattle from combined European and Australian data sets. J. Dairy Sci.
95, 6103-6112.

de Roos, APW., Hayes, B.J., Spelman, R.J., Goddard, M.E., 2008. Linkage
disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle.
Genetics 179, 1503-1512.

Dekkers, J.C.M., van Arendonk, J. A. M., 1998. Optimum selection for quantitative traits
with information on an identified locus in outbred populations. Genet. Res. 71, 257-275.
Dekkers, J.C., 2004. Commercial application of marker- and gene-assisted selection in
livestock: strategies and lessons. J. Animal Sci. 82, 313-328.

Dekkers, J.C.M., 2007. Prediction of response to marker assisted and genomic
selection using selection index theory. J. Anim. Breed. Genet. 124, 331-341.

Dikmen, S., Cole, J.B., Null, D.J., Hansen, P.J., 2013. Genome-wide association
mapping for identification of quantitative trait loci for rectal temperature during heat
stress in Holstein cattle. PLoS ONE 8, €69202.

Dimauro, C., Cellesi, M., Gaspa, G., Ajmone-Marsan, P., Steri, R., Marras, G.,
Macciotta, N.P., 2013. Use of partial least squares regression to impute SNP genotypes
in Italian Cattle breeds. Genet. Sel. Evol. 45, 15.

Druet, T., Georges, M., 2010. A hidden markov model combining linkage and linkage

23



disequilibrium information for haplotype reconstruction and quantitative trait locus fine
mapping. Genetics 184, 789-798.

Druet, T., Macleod, I.M., Hayes, B.J., 2014. Toward genomic prediction from whole-
genome sequence data: impact of sequencing design on genotype imputation and
accuracy of predictions. Heredity (Edinb). 112, 39-47.

Elsik, C.G., Tellam, R.L., Worley, K.C., 2009. The genome sequence of taurine cattle: a
window to ruminant biology and evolution. Science 324, 522-528.

Erbe, M., Hayes, B.J., Matukumalli, L.K., Goswami, S., Bowman, P.J., Reich, C.M.,
Mason, B.A., Goddard, M.E., 2012. Improving accuracy of genomic predictions within
and between dairy cattle breeds with imputed high-density single nucleotide
polymorphism panels. J. Dairy Sci. 95, 4114—4129.

Falconer D.S., Mackay T.C., 1997. Introduction to Quantitative Genetics. 4th Edition.
John Wiley & Sons, Hoboken, NJ.

Fisher, P.J., Malthus, B., Walker, M.C., Corbett, G., Spelman, R.J., 2009. The number
of single nucleotide polymorphisms and on-farm data required for whole-herd
parentage testing in dairy cattle herds. J. Dairy Sci. 92, 369-374.

Fritz, S., Capitan, A., Djari, A., Rodriguez, S.C., Barbat, A., Baur, A., Grohs, C., Weiss,
B., Boussaha, M., Esquerré, D., et al., 2013. Detection of haplotypes associated with
prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG
and SLC37A2. PLoS One 8, €65550.

Garrick, D.J., Taylor, J.F., Fernando, R.L., 2009. Deregressing estimated breeding
values and weighting information for genomic regression analyses. Genet. Sel. Evol.

41, 1-8.

Geldermann, H., Pieper, U., Weber, W.E., 1986. Effect of misidentification on the
estimation of breeding value and heritability in cattle. J. Anim. Sci. 63, 1759-1768.
Griffiths, A.J.F., Wessler, S.R., Lewontin R.C., Carroll, S.B., 2007. Introduction to

Genetic Analysis. 9th Edition. W.H. Freeman & Company, New York, NY.

24



Harris, B.L., Johnson, D.L., 2010. Genomic predictions for New Zealand dairy bulls and
integration with national genetic evaluation. J. Dairy Sci. 93, 1243-1252.

Harris, B.L., Johnson, D.L., Spelman, R.J., 2008. Genomic selection in New Zealand
and the implications for national genetic evaluation. Proc. Interbull Meeting, Niagara
Falls, Canada, 2008.

Hayes, B.J., Lien, S., Nilsen, H., Olsen, H.G., Berg, P., MacEachern, S., Potter, S.,
Meuwissen, T.H.E., 2008. The origin of selection signatures on bovine chromosome 6.
Anim. Genet. 39, 105-116.

Hayes, B.J., Visscher, P.M., Mcpartlan, H.C.E., Goddard, M. E., 2003. Novel multilocus
measure of linkage disequilibrium to estimate past effective population size. Genome

Res. 13, 635-643

Hayes, B.J., Bowman, P.J., Chamberlain, A.J., and Goddard, M.E., 2009. Genomic

selection in dairy cattle: Progress and challenges. J. Dairy Sci. 92, 433—443.

Hayes, B.J. , 2011. Efficient parentage assignment and pedigree reconstruction with
dense single nucleotide polymorphism data. J. Dairy Sci. 94, 2114-2117.

Hayes, B.J., Daetwyler, H.D., Bowman, P., Moser, G., Tier, B., Crump, R., Khatkar, M.,
Raadsma, H.W., Goddard, M.E., 2012. Accuracy of genomic selection: comparing
theory and results. Deliv. Genomics to Ind. 34-37.

Hazel, L.N., Lush, J.L., 1943. The efficiency of three methods of selection. J. Heredity

33, 393-399.

Henderson, C.R., 1949. Estimation of changes in herd environment. J. Dairy Sci. 32,

709.

Hickey, J.M., Kinghorn, B.P., Tier, B., Wilson, J.F., Dunstan, N., van der Werf, J.H.J.,
2011. A combined long-range phasing and long haplotype imputation method to impute
phase for SNP genotypes. Genet. Sel. Evol. 43, 12.

Howie, B.N., Donnelly, P., Marchini, J., 2009. A flexible and accurate genotype
imputation method for the next generation of genome-wide association studies. PLoS

25



Genet. 5, e1000529.

Hutchison, J.L., Cole, J.B., Bickhart, D.M., 2014. Short communication: Use of young
bulls in the United States. J. Dairy Sci. 97, 3213-3220.

lllumina Inc. 2011. GoldenGate Bovine3K Genotyping BeadChip. Accessed May 8,
2014.

http://www.illumina.com/Documents/products/datasheets/datasheet_bovine3K.pdf.

Jiménez-Montero, J.A., Gonzalez-Recio, O., Alenda, R., 2011. Genotyping strategies

for genomic selection in small dairy cattle populations. Animal 6, 1216-1224.

Kashi, Y., Hallerman, E., Soller, M., 1990. Marker assisted selection of candidate bulls

for progeny testing programmes. Anim. Prod. 51, 63-74.

Kashi, Y., Lipkin, E., Darvasi, A., Nave, A., Gruenbaum, Y., Beckmann, J.S., Soller, M.,
1990. Parentage identification in the bovine using “deoxyribonucleic acid fingerprints”.
J. Dairy Sci. 73, 3306-3311.

Kaupe, B., Winter, A., Fries, R., Erhardt, G., 2004. DGAT1 polymorphism in Bos indicus

and Bos taurus cattle breeds. J. Dairy Res. 71, 182—-187.

Khatkar, M.S., Zenger, K.R., Hobbs, M., Hawken, R.J., Cavanagh, J.A.L., Barris, W.,
McClintock, A.E., McClintock, S., Thomson, P.C., Tier, B., Nicholas, F.W., Raadsma,
H.W., 2007. A primary assembly of a bovine haplotype block map based on a 15,036
single nucleotide polymorphism panel genotyped in Holstein Friesian cattle. Genetics

176, 763-72.

Khatkar, M.S., Nicholas, FW., Collins, A.R., Zenger, K.R., Cavanagh, J.A., Barris W.,
Schnabel R.D., Taylor J.F.,, Raadsma H.W., 2008. Extent of genome-wide linkage
disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel.

BMC Genomics 9, 187.

Khatkar, M.S., Moser, G., Hayes, B.J., Raadsma, H.W., 2012. Strategies and utility of

imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics 13, 538.

26



Kirkpatrick, B.W., Shi, X., Shook, G.E., Collins, M.T., 2011. Whole-genome association
analysis of susceptibility to paratuberculosis in Holstein cattle. Anim. Genet. 42, 149—

160.

Koivula, M., Strandén, I., P6s6, J., Aamand, G. P., Mantysaari, E.A., 2012. Single step
genomic evaluations for the Nordic Red dairy cattle test day data. Interbull Bull. 46, 28 -

31.

Li, Y., Willer, C.J., Ding, J., Scheet, P., Abecasis, G.R., 2010. MaCH: using sequence
and genotype data to estimate haplotypes and unobserved genotypes. Genet.

Epidemiol. 34, 816—-834.

Loberg, A., Durr, JW., 2009. Interbull survey on the use of genomic information.

Interbull Bull. 39, 3-14.

Ma, P., Breandum, R.F., Zhang, Q., Lund, M.S., Su, G., 2013. Comparison of different
methods for imputing genome-wide marker genotypes in Swedish and Finnish Red

Cattle. J. Dairy Sci. 96, 4666—4677.

Mackinnon, M.J., Georges, M.A.J., 1998. Marker-assisted preselection of young dairy

sires prior to progeny-testing. Livest. Prod. Sci. 54, 229-250.

Matukumalli, L.K., Lawley, C.T., Schnabel, R.D., Taylor, J.F., Allan, M.F., Heaton, M.P.,
Connell, J.0., Moore, S.S., Smith, T.P.L., Sonstegard, T.S., et al., 2009. Development
and characterization of a high density SNP genotyping assay for cattle. PLoS One 4,

1-12.

McClure, M., Sonstegard, T., Wiggans, G., Van Tassell, C. P., 2012. Imputation of
microsatellite alleles from dense SNP genotypes for parental verification. Front. Genet.

3:140.

McClure, M.C., Sonstegard, T.S., Wiggans, G.R., Van Eenennaam, A.L., Weber, K.L.,
Penedo, C.T., Berry, D.P., Flynn, J., Garcia, J.F., Carmo, A.S., Regitano, L.C.A,,

Albuquerque, M., Silva, M.V.G.B., Machado, M.A., Coffey, M., Moore, K., Boscher, M-

27



Y.., Genestout, L., Mazza, R., Taylor, J.F., Schnabel, R.D., Simpson, B., Marques, E.,
McEwan, J.C., Cromie, A., Coutinho, L.L., Kuehn, L.A., Keele, JW., Piper, E.K., Cook,
J., Williams, R., Bovine HapMap Consortium, Van Tassell, C.P., 2013. Imputation of
microsatellite alleles from dense SNP genotypes for parentage verification across

multiple Bos taurus and Bos indicus breeds. Front. Genet. 4:176.

McKay, S.D., Schnabel, R.D., Murdoch, B.M., Matukumalli, L.K., Aerts, J., Wouter
Coppieters, W., Crews, D., Dias Neto, E., Gill, C.A., Gao, C., Mannen, H., Stothard, P,,
Wang, Z., Van Tassell, C.P., Williams, J.L., Taylor, J.F., Stephen, S., Moore, S.S. Whole

genome linkage disequilibrium maps in cattle. BMC Genetics 8, 74.

Meuwissen, T.H.E., Goddard, M.E., 1996. The use of marker haplotypes in animal
breeding schemes. Genet. Sel. Evol. 28, 161-176.
Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., 2001. Prediction of total genetic value

using genome-wide dense marker maps. Genetics 157, 1819-1829.

Meuwissen, T.H.E., 2007. Genomic selection: marker assisted selection on genome-
wide scale. J. Anim. Breed. Genet. 124, 321-322.

Muir, W.M., 2007. Comparison of genomic and traditional BLUP — estimated breeding
value accuracy and selection response under alternative trait and genomic parameters.

J. Anim. Breed. Genet. 124, 342-355.

Nejati-Javaremi, A., Smith, C., Gibson, J.P., 1997. Effect of total allelic relationship on

accuracy of evaluation and response to selection. J. Animal Sci. 75, 1738—-1745.

Nicolazzi, E.L., Biffani, S., Jansen, G., 2013. Short communication: imputing genotypes
using Pedimpute fast algorithm combining pedigree and population information. J.

Dairy Sci. 96, 2649-2653.

Parker Gaddis, K.L., Cole, J.B., Clay, J.S., Maltecca, C., 2014. Genomic selection for

producer-recorded health event data in US dairy cattle. J. Dairy Sci. 97, 3190-3199.

Patry, C., Ducrocq, V., 2011. Evidence of biases in genetic evaluations due to genomic

28



preselection in dairy cattle. J. Dairy Sci. 94, 1011-1020.

Pausch, H., Aigner, B., Emmerling, R., Edel, C., Gétz, K.-U., Fries, R., 2013. Imputation

of high-density genotypes in the Fleckvieh cattle population. Genet. Sel. Evol. 45, 3.

Pryce, J.E., Hayes, B.J., Goddard, M.E., 2012a. Genotyping dairy females can improve
the reliability of genomic selection for young bulls and heifers and provide farmers with

new management tools. Proceedings of ICAR Congress: Cork, Ireland.

Pryce, J.E., Hayes, B.J., Goddard, M.E., 2012b. Novel strategies to minimize progeny
inbreeding while maximizing genetic gain using genomic information. J. Dairy Sci. 95,

377-388.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller,
J., Sklar, P., de Bakker, P.L.W., Daly, M.J., et al., 2007. PLINK: a tool set for whole-
genome association and population-based linkage analyses. Am. J. Hum. Genet. 81,

559-575.

Qanbari, S., Pimentel, E.C.G., Tetens, J., Thaller, G., Lichtner, P., Sharifi, A.R.,
Simianer H., 2010. The pattern of linkage disequilibrium in German Holstein cattle.

Anim. Genet. 41, 346-356.

Romualdi, C., Balding, D., Nasidze, I.S., Risch, G., Robichaux, M., Sherry, S.T,
Stoneking, M., Batzer, M.A., Barbujani, G., 2002. Patterns of human diversity, within
and among continents, inferred from biallelic DNA polymorphisms. Genome Res. 12,

602-612.

Ron, M., Blanc, Y., Band, M., Ezra, E., Weller, J.l., 1996. Misidentification rate in the
Israeli dairy cattle population and Its implications for genetic improvement. J. Dairy Sci.
79, 676-681.

Santos, D.J.A., Utsunomiya, A.T.H., Tonhati, H., Peixoto, M.G.C.D., Panetto, J.C.C.,

Sargolzaei, M., Schenkel, F., Chesnais, J., 2011. Accuracy of imputed 50K genotypes

from 3K and 6k chips using FImpute version 2 (ON, Canada).

29



Sargolzaei, M., Chesnais, J.P., Schenkel, F., 2012. Efficient combined family and

population imputation in large data sets. Open Ind. Sess. Oct. 30, 2012 1-10.

Schaeffer, L.R., 2006. Strategy for applying genome-wide selection in dairy cattle. J.

Anim. Breed. Genet. 123, 218-223.

Scheet, P., Stephens, M., 2006. A fast and flexible statistical model for large-scale
population genotype data: applications to inferring missing genotypes and haplotypic

phase. Am. J. Hum. Genet. 78, 629-644.

Schrooten, C., Dassonneville, R., Ducrocq, V., Brandum, R.F., Lund, M.S., Chen, J.,
Liu, Z., Gonzalez-Recio, O., Pena, J., Druet, T., 2014. Error rate for imputation from the
lllumina BovineSNP50 chip to the lllumina BovineHD chip. Genet. Sel. Evol. 46, 10.

Sigurdsson, A., Banos, G., 1995. Dependent variables in International sire evaluations.

Acta Agric. Scand. 4, 209-217.

Silva, M.V.G.B., Santos D.J.A., Utsunomiya, A.T.H., Verneque, R.S., Machado, M.A.,
Panetto, J.C.C., 2013. Persisténcia da fase para principais racas zebuinas orientais
criadas no Brasil. XXIll Reunién de la ALPA, Havana, Cuba.

Smith, C., 1967. Improvement of metric traits through specific genetic loci. Anim. Prod.

9:349-358.

Spelman, R.J. , 2002. Utilisation of molecular information in dairy cattle breeding. In
Proceedings of the WCGALP, (Montpellier, France), pp. 20-25.

Spelman, R.J., Hayes, B.J., Berry, D.P., 2013. Use of molecular technologies for the
advancement of animal breeding: genomic selection in dairy cattle populations in

Australia, Ireland and New Zealand. Anim. Prod. Sci. 53, 869-875.

Stock, K.F., Reents, R.. 2013. Genomic selection: Status in different species and

challenges for breeding. Reprod Domest Anim. 48 Suppl 1, 2-10.

Stormont, C., 1967. Contribution of blood typing to dairy science progress. J. Dairy Sci.

50, 253-260.

30



Su, G., Breandum, R.F., Ma, P., Guldbrandtsen, B., Aamand, G.P., Lund, M.S., 2012.
Comparison of genomic predictions using medium-density (~54,000) and high-density
(~777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red

Dairy Cattle populations. J. Dairy Sci. 95, 4657—4665.

Sun, C., VanRaden, P.M., O'Connell, J.R., Weigel, K.A., and Gianola, D., 2013. Mating
programs including genomic relationships and dominance effects. J. Dairy Sci. 96,

8014-8023.

Tsuruta, S., Aguilar, I., Misztal, |., Lawlor, T.J., 2011. Multiple-trait genomic evaluation of
linear type traits using genomic and phenotypic data in US Holsteins. J. Dairy Sci. 94,

4198-4204.

VanRaden, P.M., Wiggans, G.R., 1991. Derivation, calculation and use of national

animal model information. J. Dairy Sci. 74, 2737-2746.

VanRaden, P.M., 2008. Efficient methods to compute genomic predictions. J. Dairy Sci.

91, 4414-4423.

VanRaden, P.M., Van Tassell, C.P., Wiggans, G.R., Sontegard, T.S., Schnabel, R.D.,
Taylor, J.F., Schenkel, F.S., 2009. Invited Review: Reliability of genomic predictions for

North American Holstein bulls. J. Dairy Sci. 92, 16-24.

VanRaden, P.M., Olson, K.M., Null, D.J., Hutchison, J.L., 2011a. Harmful recessive
effects on fertility detected by absence of homozygous haplotypes. J. Dairy Sci. 94,

6153-6161.

VanRaden, P.M., Olson, K.M., Wiggans, G.R., Cole, J.B., Tooker, M.E., 2011b.
Genomic inbreeding and relationships among Holsteins, Jerseys, and Brown Swiss. J.

Dairy Sci. 94, 5673-5680.

VanRaden, P.M., Null, D.J., Sonstegard, T.S., Adams, H.A., Van Tassell, C.P., Olson,

K.M., 2012. Fine mapping and discovery of recessive mutations that cause abortions in

31



VanRaden, P.M., Cooper, T.A., Wiggans, G.R., O’'Connell, J.R., Bacheller, L.R., 2013a.
Confirmation and discovery of maternal grandsires and great-grandsires in dairy cattle.

J. Dairy Sci. 96, 1874-1879.

VanRaden, P.M., Null, D.J., Sargolzaei, M., Wiggans, G.R., Tooker, M.E., Cole, J.B.,
Sonstegard, T.S., Connor, E.E., Winters, M., van Kaam, J.B.C.H.M., et al., 2013b.
Genomic imputation and evaluation using high-density Holstein genotypes. J. Dairy

Sci. 96, 668-678.

Van Tassell, C.P., Van Vleck, L.D., 1991. Estimates of genetic selection differentials and

generation intervals for four paths of selection. J. Dairy Sci. 74, 1078-1086.

Van Tassell, C.P., Smith, T.P.L., Matukumalli, L.K., Taylor, J.F., Schnabel, R.D., Lawley,
C.T., Haudenschild, C.D., Moore, S.S., Warren, W.C., Sonstegard, T.S., 2008. SNP
discovery and allele frequency estimation by deep sequencing of reduced

representation libraries. Nature Meth. 5, 247-252.

Verbyla, K.L., Calus, M.P.L., Mulder, H.A., de Haas, Y., Veerkamp, R.F. 2010,
Predicting energy balance for dairy cows using high-density single nucleotide

polymorphism information. J. Dairy Sci. 93, 2757-2764.

Visscher, P.M., Woolliams, J.A., Smith, D., Williams, J.L. , 2002. Estimation of pedigree
errors in the UK dairy population using microsatellite markers and the impact on

selection. J. Dairy Sci. 85, 2368-2375.

Wall, E., Simm, G., Moran, D., 2010. Developing breeding schemes to assist mitigation

of greenhouse gas emissions. Animal 4, 366—-376.

Weigel, K.A., de los Campos, G., Vazquez, A., Van Tassell, C.P., Rosa, G.J.M,,
Gianola, D., O’Connell, J.R., VanRaden, P.M., Wiggans, G.R., 2010. Genomic selection
and its effects on dairy cattle breeding programs. Proceedings of the Ninth World
Congress on Genetics Applied to Livestock Production: 1-6 August 2010; Leipzig.

119:8.

32



Weigel, K.A., Van Tassell, C.P.,, O' Connel, J.R., VanRaden, P.M., Wiggans, G.R., 2010.
Prediction of unobserved single nucleotide polymorphism genotypes of Jersey cattle
using reference panels and population-based imputation algorithms. J. Dairy Sci. 93,

2229-2238.

Wiggans, G.R., Sonstegard, T.S., VanRaden, P.M., Matukumalli, L.K., Schnabel, R.D.,
Taylor, J.F., Schenkel, F.S., Van Tassell, C.P., 2009. Selection of single-nucleotide
polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in

the United States and Canada. J. Dairy Sci. 92, 3431-3436.

Wiggans GR, VanRaden PM , Cooper TA., 2011. The genomic evaluation system in the

United States: Past, present, future J. Dairy Sci. 94, 3202-3211.

Yan, J., Shah, T., Warburton, M.L., Buckler, E.S., McMullen, M.D., Crouch, J., 2009.
Genetic characterization and linkage disequilibrium estimation of a global maize

collection using SNP markers. PLoS ONE 4, 1-14.

33



¢ Genomic methodological basis: linkage disequilibrium, haplotype, phase persistence
and imputation methodologies

[l Traditional marker-assisted selection and genome selection evaluation: efficiency,
profitability, use of (pseudo-) phenotype

[ Principal traits selected in a Dairy Breeding program and their results with genomic
selection analyses.

34





