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 Abstract 

 Genomic selection (GS) has profoundly changed dairy cattle breeding in the last 

decade and can be defined as the use of genomic breeding values (GEBV) in selection 

programs. The GEBV is the sum of the effects of dense DNA markers across the whole 

genome, capturing all the quantitative trait loci (QTL) that contribute to variation in a 

trait.  This technology was successfully implemented in many countries as the United 

States, Canada, New Zealand, Australia and many other with very promising results. 

The GEBV reliability depends on estimation procedures and models. The different 

methodologies to estimate SNP effect and GEBV have been extensively tested for 

many research groups with very promising results. Although the GS success, many 

challenges still remain, including integration of GEBV into genetic evaluation programs 

and increasing GEBV reliability. 

The aim of this review is to discuss the main  aspects involved with GS, including 

different methodologies of imputation, SNP effect estimation, and the most important 

impacts of GS implementation in dairy cattle. 

 Keywords: dairy cattle, genomics, SNP, genomic selection   

 

 Introduction 

 The use of DNA marker for genetic improvement of dairy cattle was first 

suggested by Smith in the late 1960s (Smith, 1967), particularly for traits that are 

difficult to improve in conventional breeding programs because of low heritabilities or 

difficult-to-measure phenotypes. Affordable high-speed genotyping of large numbers of 

single nucleotide polymorphisms (SNP) became affordable for dairy cattle late in 2007, 

which permitted the development of genomic selection programs as originally 

described by Nejati-Javaremi et al. (1997) and expanded by Meuwissen et al. (2001). 

 In addition to increasing rates  of  genetic  improvement  and reducing  costs  of  

progeny  testing  (Meuwissen  et  al., 2001;  Schaeffer,  2006),  genomic  evaluations  

produce estimates of the contributions of individual markers to additive genetic merit.  
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The rapid adoption of this technology has caused profound changes in the dairy cattle 

industry (Stock and Reents, 2013).  

 Two major technological advances were critical to the implementation and 

success of GS. The first was the completion of the bovine genome sequence and 

publication of the reference assembly, which was the basis for accelerated research 

progress and allowed the identification of several thousands of DNA markers, known as 

SNP (Elsik et al., 2009). The second one was the development of low-cost SNP chips 

containing thousands of markers, which enabled the estimation highly accurate 

breeding values when combined with phenotypic and pedigree data (Meuwissen, 

2001).  

 In a broad sense, GS can be defined as the use of genomic breeding values 

(GEBV) to make selection decisions. The GEBV can be derived as the sum of the 

effect of markers across the genome, thereby potentially capturing all the quantitative 

trait loci (QTL) that contribute to variation in a trait. Reliable estimation procedures are 

needed for the estimation of allele substitution effects of each SNP for a trait (Hayes et 

al., 2009; VanRaden, 2008).  

 According to Schaeffer (2006), one of the main benefits of using GEBV in dairy 

cattle breeding programs is that selection can be made early in life, sometimes before 

an animal is born, reducing the generation interval. This can potentially double the rate 

of genetic gain. In addition, more reliable information about cows can be obtained, 

which may result in greater genetic progress through the dams of cows selection path 

(Van Tassell and Van Vleck, 2001). 

 The objective of this article is to review the principal aspects of GS in dairy cattle, 

including the most popular methods for GEBV estimation, genotype imputation, 

potential applications, and future perspectives. 

  

 Base of genomic analyses in Dairy Cattle: Linkage Disequilibrium, 

Haplotype and Persistency 



4 

 

 In the last decade, the dairy quantitative traits began to be studied and even 

selected in many different breeding programs, with the aid of molecular markers. The 

markers can be direct, exactly marking the causative mutation of a gene, or  indirect, 

marking regions that are nearest to the causative mutation or regions related to these 

mutations in only a few families (Dekkers, 2004). When working with large SNP panels 

to analyze quantitative traits most markers will be indirect, but in linkage with causal 

mutations (Dekkers, 2004). When markers are in linkage with the causative mutations, 

there is the possibility of recombination between the two. Recombination is a 

phenomenon that occurs during the formation of gametes (sperm and ovum) and 

involves the random exchange of genetic material between homologous chromosomes 

(Griffiths et al., 2009). The occurrence of recombination between two loci is 

proportional to the physical distance between them on the chromosome. Thus, the 

smaller the distance between two loci, the slower it will get to equilibrium of the 

expected genotype frequencies of these loci, under generations of random mating. The 

linkage disequilibrium (LD) measure will then indicate a nonrandom association 

between two loci considered, based on their genotypic and allelic frequencies 

(Falconer and Mackay, 1996). The main cause of LD is the "linkage" between loci 

because of  physical proximity. Genomic selection exploits the linkage disequilibrium 

(LD) between markers, since it assumes that the effects of the analyzed chromosomal 

segments also represent the LD between the marker and a possible quantitative trait 

locus (QTL) (de Roos et al., 2008). The extent, distribution, and decay of LD in a 

population must be characterized before a genomic selection program is implemented. 

 Studies based on SNPs showed high LD over short distances as reported by 

McKay et al. (2007) and Bohamanova et al. (2011). Other authors, such as Khatkar et 

al. (2008) and Qanbari et al. (2010), observed r2 ≥ 0.2 in Holsteins for distances less 

than than 100 kb. Santos et al. (2013), working with a panel of 54,000 SNPs, reported 

r2 of 0.15, 0.17, and 0.17 for Guzerat (n = 1025), Gyr (n = 1959), and Sindhi (n = 116), 

respectively. The variation in the extent of LD published depends on several factors, 
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including breed history and population structure (e.g., effective population size) that 

negatively influence LD (Hayes et al., 2003); the sample size, which can lead to 

overestimation in small populations (Yan et al., 2009); the density and distribution of 

markers; the method used to construct haplotypes; the stringency of SNP filtering (e.g., 

allele frequency thresholds and Hardy-Weinberg equilibrium); and the use of maternal 

haplotypes or both maternal and paternal haplotypes (Bohamanova et. al., 2011). 

 These results indicate that SNP density alone is sufficient to provide LD 

between chromosome segments determined for prediction of GEBV, especially when 

the inter-marker distances are less than 100 Kb (r2 is moderate to high). When 

proposing GS in its current form, Meuwissen et al. (2001) used adjacent markers with 

r2 > 0.20 indicating that this LD may explain the variation of the QTL. Callus et al. 

(2008) used simulated data to evaluate the effect of average r2 between adjacent pairs 

of markers on the accuracy of genomic selection (correlation of true breeding values 

and to GEBV group of animals validation). They found that the accuracy of GEBV 

increased from 0.68 to 0.82 when the average r2 increased from 0.1 to 0.2. Based on 

those results, de Roos et al. (2008) estimated that a panel of at least 50,000 SNPs 

would be necessary to achieve and r2 ≥ 0.20 between adjacent markers, which is 

needed to support efficient GS. Another important use for the LD is the construction of 

haplotypic blocks and their diversity. These blocks can be used as units for genomic 

analysis rather than the SNP (Calus et al. 2008), in imputation algorithms (Browning 

and Browning, 2009), and in genomic detection of lethal alleles (VanRanden et al., 

2011). According to Khatkar et al. (2007), haplotypes are chromosomal regions of high 

LD and normally have low diversity, typically accounting for regions of low 

recombination flanked by hotpots of recombination. Generally, the structure provided 

by the effective size between the breeds, as well as the number of markers used, can 

influence the assembly of haplotypic blocks. 

 When LD is estimated in different populations using the same SNPs it is 

possible to study the persistence of phase (PS) between them. PS refers to how much 
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a chromosomal segment is unchanged over a given physical distance in different 

subpopulations, breeds, or species. This measure is based on the correlations of r2 

between two populations, along with physical distances (de Roos et al., 2008). Since 

PS is related to the accuracy of genome-wide association studies (GWAS) and GEBVs 

between populations (de Roos et al., 2008), it is possible to evaluate the feasibility of a 

multibreed genomic evaluation using this measure. Silva et al. (2013) working with Gyr, 

Guzerat, and Sindhi obtained correlations ranging from 0.40 to 0.56 for 100 kb 

distances, with an intense decline of PS, suggesting low efficiency for multibreed 

evaluation based on common SNP effects estimates for the 3 breeds. Despite the low 

PS observed in some cases, the increased density of the SNP panel markers, may 

consider high phase correlation between pairs of markers at small distances, as well as 

the largest LD between markers, making possible the multibreed analyses based on 

the same SNP effects.  

 Traditional marker-assisted selection and genome selection evaluation: 

efficiency, profitability and use of (pseudo-) phenotype 

Progress in animal breeding programs is achieved through the selection of 

superior individuals for mating. An animal’s superiority is generally based on its ranking 

on the basis of genetic merit. The accuracy of evaluation methods is one of the main 

components that determines rate of genetic gain in a population. Initially, evaluations 

were based only on phenotypes, i.e., the animals that had better performance were 

chosen for mating, or in the case of milk production, the sons of the most productive 

cows. Breeding values were obtained by multiplication of phenotypic deviations from 

the herd average with heritability.  

In the latter half of the 20th century, selection index methodology was introduced 

by Hazel and Lush (1943). This methodology considered the relationship between 

phenotypic measures, as well as the genetic relationships between animals with 

phenotypes (selection criteria to be used - in the present left hand) and the individuals 
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being evaluated (objective selection - present in the right hand). With this method it 

was possible to combine many sources of information into a single breeding objective. 

In the indices the main properties would decrease the prediction error, maximizing the 

correlation between the estimated and true (accurate) genetic value and maximizing 

the probability of correct classification for the predicted genetic value. Thus, there was 

an increase in accuracy by aggregating information collaterally other animals. From this 

methodology we started to give greater importance to the pedigree of animals for use 

in analysis beyond parent - offspring relationships. 

With the development of mixed model methods by Henderson (1949) genetic 

evaluations began to provide more accurate estimates of breeding value. First, through 

sires model that considered sire-progeny relationships, and then through the animal 

model, which considered all known relationships among animals in the pedigree. Using 

this methodology it is possible to simultaneously estimate fixed effects (BLUE - Best 

Linear Unbiased Estimator) and random (BLUP - Best Linear Unbiased Prediction). 

Thus, the BLUP solution is obtained for all animals present in the pedigree. This 

methodology has similar statistical properties to selection index, but directly produces 

estimated breeding values, unlike selection index, in which index weights and breeding 

values are produced in separate steps. Estimated breeding values (EBV) were widely 

adopted as a selection tool in breeding programs, where they are commonly presented 

as predicted transmitting abilities (PTA), which are one-half of EBV.  

 The use of molecular marker information to increase accuracy and reduce 

generation intervals has been studied in recent decades, and implemented in a limited 

fashion in some breeding programs. Marker-assisted selection (MAS) was applied in 

dairy cattle for the pre-selection of animals, and to select young bulls for entry intob 

progeny testing programs (Kashi et al., 1990; Mackinnon and Georges, 1998).  MAS 

simultaneously uses phenotypic information and data about molecular markers in LD 

with QTLs, and was adopted to increase annual genetic gain for traits of economic 

importance in several animal species (Dekkers, 2004). In MAS, BLUP estimates of total 



8 

 

genetic value are obtained that include marker information as fixed or random effects 

(Dekkers, 2004), or through an index that combines the two sources of information 

using weights can be changed based on the selection objective (Dekkers and van 

Arendonk, 1998). 

Other molecular alternatives are being widely studied. The first recognizable 

presentation of genomic selection was made by Nejati-Javaremi et al. (1997), and the 

approach was expanded and popularized by Meuwissen et al. (2001). However, there 

was considerable lag between the description of the concept and its widespread 

adoption, which did not occur until panels with thousands of single nucleotide 

polymorphisms (SNPs) distributed across the the bovine genome became available 

(Van Tassell et al. 2008). SNPs are the most abundant DNA polymorphisms in the 

genome, and they have become preferred over other types of molecular markers 

because they have low mutation rates and genotypes can easily be read automatically 

(Romualdi et al. 2002). In GS, the central idea is to not use specific markers for QTLs, 

but to use a large number of markers distributed throughout the genome. When many 

thousands of markers are used it can reasonably be assumed that there are always 

markers located near causal variants, which means that there are SNP in LD with the 

QTL (de Ross et al., 2008). The additive genetic merit of an animal can then be 

decomposed into a contribution from the markers and a polygenic component that 

accounts for the variation not explained by the markers. The marker and polygenic 

effects can be estimated using statistical models similar to those used for breeding 

value estimation, and performance, pedigree, and genotype information can be 

combined into genomic breeding values (Meuwissen et al., 2001; VanRaden, 2008). 

Cole et al. (2009) confirmed than an infinitesimal model is appropriate for most traits of 

interest in dairy production, and showed that there are few QTL in the traditional sense 

(loci that explain large proportions of phenotypic variance). 

Genomic selection does not have the same limitations as MAS, and GS 

compared to BLUP provides: 1) predictions of breeding values with greater accuracy, 
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particularly for traits that are expressed in one sex or are of low heritability, 2) lower 

rates of inbreeding (lesser tendency for family selection), 3) antecipation the selection 

process in the case of measured characteristics later in life animals, and 4) facilitate 

the evaluation of the traits of difficult to measure or high cost (Daetwyler et al., 2007; 

Dekkers, 2007; Muir, 2007; Meuwissen, 2007). 

Genomic selection has increased the rate of genetic gain in livestock (Weigel et 

al., 2010). The increase in the accuracy of genomic predictions is best observed in 

young animals, with no significant changes in the already proven bulls (Schaeffer, 

2006). Proofs are used for pre-selection for progeny testing, and also for selection of 

animals when they are selected by GEBV in the total genomic evaluation. In didactic 

scheme, the genomic proofs for dairy cattle have a flow that involves a reference 

population and another population to be selected.  Thus, the reference population 

consists of animals which have, necessarily, accurate information of the trait. This 

population is used as the genetic basis for predicting the effects of markers. 

The determination of the reference population, as its size and its constitution, 

has great influence on the accuracy of genomic predictions (Hayes et al., 2009; 

VanRaden et al., 2009). In the case of dairy herds, the constitution is mainly dependent 

on the composition (bulls and cows) and selective genotyping according to the 

structure of the response variable. In most countries, only sires, mainly high accuracy 

were genotyped and included in the reference population (Loberg and Dürr, 2009). For 

other side, the use of more accurate information implies the use the best animals as 

reference. However, simulation studies of dairy cattle as Jiménez-Monteiro et al. (2011) 

concluded that the selection of only females with high estimated breeding values or 

yield deviations produced suboptimal results. This study  showed that the better 

sampling for females are upper and lower extreme values within the distribution of yield 

deviations with the usual sampling for males, although these authors have not 

evaluated this combination with deviations yield of daughters (DYD) for sires.     

One of the first steps for genomic selection is generate the response variable 
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for genomics analysis, which depends on the available sources (individual 

performance, of the daughters or parents). Different information can be used, from the 

phenotype itself, as single records, repeated records, the average of the progeny, or 

even the pseudo-phenotypes as DYD (VanRaden and Wiggans, 1991), EBV and 

deregressed-EBV (Garrick et al., 2009). For dairy traits, pseudo-phenotypes are 

preferred because lactations are sex-limited and only females have phenotypes. 

Among these, DYD are the most-used because besides sires have a larger impact on 

breeding programs than cows, and their DYDs are more accurate than cow phenotypes 

(Calus et al., 2009). The deregressed-EBV can be considered a type of deregressed-

proof (DRPF) when are used sires with information of the high accuracy in the 

reference population, because they combine different sources of information about the 

sires besides the informations of his daughters. Generally the DRPFs are considered 

equivalent to DYD (Sigurdsson et al., 1995). The deregressed-EBV are used in 

genomic evaluation of dairy traits when there are cows and bulls in the reference 

population. However when using any deregressed pseudo-phenotype there is an 

individual increment disproportionate in response variable that leads to the need to 

consider the heterogeneity of the residue by statistical models, with weights that range 

according to the source used to deregress and effects considered (Garrick et al. 2009). 

When using genomic evaluations as criteria for pre-selection of animals to 

progeny test it is possible to reduce spending to prove that animals would have low 

performance in the test (Hayes et al., 2009), but there is potentially a problem with 

preselection bias (Patry and Ducrocq, 2011). Dekkers (2006) reported that rates of 

genetic change can be 3 to 4 times higher with GS than under current progeny test 

programs, and the savings in logistical costs could be 97% of today’s cost. 

Furthermore, genotyping costs are also likely to decrease over time, which would make 

the GS easier to administer. Schrooten et al. (2005) reported that genetic progress 

increased from 19 to 31% compared to progeny testing, when the molecular markers 

explained 50% of the genetic variance. VanRanden et al. (2009) reported that the 
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predictive ability for dairy traits using genomic predictions was 50% versus 27% for the 

traditional PTA. They also reported that gains for proven bulls were highly significant, 

although smaller than the young bulls because of the higher initial reliability of these 

bulls. Note that the GS is already applied and showed promising results in many 

countries, including the USA, Canada, New Zealand, and the Netherlands (Loberg and 

Dürr, 2009).  

Despite these latest innovations in genomics area bring the advantages 

described above, the molecular informations also demanded an increase in statistical 

and computational resources, limiting the use of such information in many analyzes 

including the multi-trait models and test-day models. Although these models are easily 

applied by replacing the traditional numerator relationship matrix (A) with the genomic 

relationship matrix (G) (Koivula et al, 2012; Tsuruta et al, 2011), has yet didn't get at a 

robust analysis of multivariate nature with models that consider different variances for 

the markers, this being perhaps one of the greatest prospects for optimization of 

genomic analyzes of the dairy traits.  

 Parentage correction and Pedigree errors 

 For a successful and comprehensive evaluation of individuals in any breeding 

program, correct parentage and pedigree information are essential because pedigree 

information is a key part of variance component and breeding value estimations. 

Pedigree error rates in dairy cattle breeds have been estimated to average 10 to 12% 

average (Banos et al., 2001; Spelman, 2002; Visscher et al., 2002), although reports 

from the 1970s to the late 1990s estimated values ranging from 5% to about 22% 

(Christensen et al., 1982; Geldermann et al., 1986; Bovenhuis and Van Arendonk, 

1991; Ron et al., 1996). The rapid adoption of micro-satellite parentage testing in the 

cattle breeding industry probably reduced parentage and pedigree errors, most 

commercial (grade) cows are not tested. Although error rates may decreased over the 

years, parentage and pedigree inconsistencies of 10 or 11% can lead to reductions in 
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genetic gain of 2 to 18% (Banos et al., 2001; Visscher et al., 2002). 

 Before the advancement in high throughput single nucleotide polymorphism 

(SNP) data, blood groups (Stormont, 1967) and mini- and micro- satellite (Kashi et al., 

1990) were the basic means of inferring parentage. Even though micro-satellite are still 

used, with the recent availability of SNP markers and with large numbers of sires 

(Harris and Johnson, 2010; Weigel et al., 2010; Fritz et al., 2013; VanRaden et al., 

2013b) and dams (Spelman et al., 2013; VanRaden et al., 2013b) genotyped in the 

USA, Canada, Australia, New Zealand, Ireland and France among others, parentage 

and pedigree errors are increasingly identified using SNP genotypes. McClure et al. 

(2012, 2013) have developed methods to impute microsatellite parentage panels from 

SNP-based parents panels, which will assist cattle producers as they transition from 

microsatellite to SNP genotyping for parental verification. 

 Parentage assignment is a method aimed at excluding individuals (“exclusion 

principle”) from the list of potential parent. This means that, a large number of 

“potential” sires and dams are examined and only one or a few individuals are retained 

based on their marker data by using simple segregation rules (Kashi et al., 1990; 

Hayes, 2011). In addition to marker genotypes, additional accuracy can be achieved if 

information of birth date and mating records are considered.  

 Due to the abundant SNP marker information and the shift from micro-satellite 

to small SNP panels, we give a brief description of how SNP information is used to 

correct pedigrees and infer potential parents. Initial verification of information (parents) 

obtained from pedigree are an be done to detect parent-offspring inconsistencies. If 

parent-offspring errors exceeds a certain defined threshold, then loop through the 

entire genotype data infer the potential parents. For individuals with no pedigree 

information, loop through the entire genotype data directly to obtain potential parent.  

The algorithm for detecting and inferring parent offspring conflict is based on Mendelian 

inheritance rules (Calus et al., 2011; Hayes, 2011). This means that, for a bi-allelic 

SNP, an individual and the prospective parent are both homozygous but for different 
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alleles “opposing homozygotes”. eg. If an individual has an A|A genotype, the potential 

parent should carry the “A” allele (A|A or A|B), however if the potential parent has B|B 

allele for more possible parent offspring conflicts per locus) then they have opposing 

homozygous genotype. Looping across all SNP genotypes, the sum of all “opposing 

homozygous” is compared to an empirically determined threshold (determined from on 

genotype error rate). Furthermore, to avoid picking up monozygotic twins in the 

pairwise comparison (parent-offspring check), information from birth years could be 

used. 

 The empirical thresholds are based on the realized distribution of genotyping 

errors for all parent-offspring conflict checks. Wiggans et al. (2009), Calus et al. (2011) 

and Hayes (2011) all reported similar distribution of Mendelian errors for the Illumina 

50K SNP panel. Wiggans et al. (2009) and Calus et al. (2011) used >200 SNPs and 

>250 SNPs, respectively, on a 50K panel to exclude parent-offspring conflicts. 

However, Hayes (2011) used a stringent threshold of >25 SNPs on 50K SNP panel and 

>8 SNPs on a 3K SNP panel. Additionally, unpublished results from Gyr (Brazilian Bos 

indicus breed) shows similar distribution when 50K SNP panel was used. The number 

of markers within the empirical threshold were <58, however <200 SNP markers were 

used as the threshold. The total parent-offspring conflict observed was about 8% in Gyr 

and we could infer potential parent for about 2% of these errors. Calus et al. (2011) 

removed 230 individuals with parent-offspring conflict. Fisher et al. (2009) reported 

that, about 40 highly polymorphic SNP markers (MAF>0.35) and on-farm information 

about birth dates and mating periods were needed to correctly assign parentage 

without any unambiguity. 

 Using SNP data, (i) recent ancestors errors, (ii) maternal grandsire errors, and 

(iii) full- and half-sibling errors could also be corrected (Wiggans et al., 2009; Calus et 

al., 2011; VanRaden et al., 2013a). The reduction in parentage and pedigree errors 

would go a long way to help reduce the loss in genetic gain (Banos et al., 2001; 

Visscher et al., 2002) and potentially decrease inbreeding. We conclude that, although 



14 

 

there is a dearth of knowledge on the current pedigree errors detected using SNP data 

in dairy cattle populations, the supposed reason been, the lack of interest in publishing 

pedigree errors, however, most publish materials on genomic related research 

(genomic selection, GWAS, etc.) undertake this key component before performing their 

analysis.  

 

 Principal traits selected in a Dairy Breeding program and their results with 

genomic selection analyses. 

 Since 2009, the United States in collaboration with Canada has published 

genomic evaluations based on BovineSNP50 genotypes. More recently these two 

countries included Illumina's Bovine3K chip genotypes in their GEBV estimations, 

increasing enormously the number of genomically evaluated animals (VanRaden et al., 

2011a). Many countries like Australia, New Zealand, Germany, Switzerland and many 

others also implemented GS on their breeding programs and encouraged widespread 

use of young genomically evaluated bulls (Wiggans, 2011). Hutchison et al. (2014) 

have recently shown that the heavy use of genomically evaluated young bulls in the US 

has greatly reduced the generation interval and improved the rate of genetic gain. The 

average age of sires of Holstein bulls born in 2012 was 2.7 yr younger than those 

males born in 2006, and 1.3 yr younger for females. This indicates that dairy producers 

are willing to use semen from young bulls that rank highly rather than use lower-

ranking bulls with progeny tests. 

  One of the most important requirements for GS implementation is the use of a 

large reference or training population that include animals with both phenotype and 

genotype information, thus all the traits routinely evaluated on commercial breeding 

programs are able to have their GEBV estimated.  In the United States, more than 30 

traits traditionally estimated and related to health, yield, and fertility of dairy cattle have 

their GEBV available, including net merit, milk yield, protein yield, fat yield, protein 

percentage, fat percentage, productive life, somatic cell score and daughter pregnant 
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rate (VanRaden et al. 2009; Weigel et al. 2010). 

 Previous results of GS from Australia for protein yield, protein percentage, 

fertility, Australian Profit Ranking and Australian Selection Index, demonstrated that 

GEBV reliabilities estimated with Bayes A and BLUP methodologies were in a range of 

0.14 to 0.48 and 0.18 to 0.44, respectively. The reliabilities of GEBV were considerably 

greater than traditional EBV estimations even with a small size reference population 

(approximately 600 animals) (Hayes et al., 2009). 

 More recent results from Australian Dairy Futures Cooperative Research 

Centre’s demonstrated that the expansion of reference population to 10,000 Holstein 

and 4000 Jersey cows, could lead to 0.04 to0.08 improvement in the reliability of 

breeding values depending on the trait (Pryce et al., 2012a). 

 In a similar study conducted by LIC (Livestock Improvement Corporation) in 

New Zealand, GEBV for milk production traits, live birth weight, fertility, somatic cell 

counts and longevity presented reliabilities for young bulls with no daughter information 

between 0.50 to 0.67, indicating a increase in the rate of genetic trend above than 50% 

if compared with traditional EBV (Harris et al., 2008). 

 As milk production becomes increasingly specialized and competitive, selection 

objectives will need to include traits related to profitability and animal efficiency. To 

meet this goal, new traits, not traditionally measured by breeding programs, are been 

evaluated for inclusion in selection programs, such as feed efficiency (De Haas et al., 

2012), methane emission (Wall et al., 2010), energy balance (Verbyla et al., 2010), 

disease resistance (Kirkpatrick et al., 2011; Parker Gaddis et al., 2014), novel fertility 

traits (Cochran et al., 2013a, 2013b), resistance to heat stress (Dikman et al., 2013), 

and calf birth weight (Cole et al., 2014). One of the restrictions of the introduction of 

novel traits on GS is the low accuracies of the estimations due to small to moderate 

size of the reference population.  

 Calus et al., 2013 evaluating a novel trait with heritability ranging between 0.05 

and 0.30 and a moderate size reference population demonstrate that although the 
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accuracies are low (0.15 and 0.43 for traits with heritabilities of 0.05 and 0.30, 

respectively), the selection response could be substantial depending on the heritability 

and economic value of the new trait and the genetic correlation with the current 

breeding goal. Accordingly, to achieve accuracies acceptable in dairy cattle breeding 

programs, the reference population should be larger.  

 

 Imputation results on genomic evaluation 

 The increase in genetic gain and accuracy of prediction using genomic 

information have been discussed extensively under section 3. Even though the price of 

genotyping individuals for the implementation was high about a decade ago, the 

promise of doubling genetic gain at a lower cost than progeny testing (Schaeffer, 2006) 

was enough incentive to genotype bulls on the then 50K Illumina SNP panel 

(Matukumalli et al., 2009). However, the extended cost that came along with the 

requirement of increasing the reference population (training set) and genotyping 

selection candidate facilitated the need to use alternative SNP panels that were 

cheaper and preferably efficient for genomic selection.  Additionally, the accurate in-

silico genotyping (Imputation) of SNP markers in the field of human genetics gave a 

unique perspective into how genotyping cost could be drastically reduced (Browning 

and Browning, 2007, 2009; Howie et al., 2009).  

 Genotype imputation uses population-based linkage disequilibrium (LD), family-

based linkage information or a combination of both, to infer genotypes at un-typed 

marker loci. Population-based imputation algorithms were developed mainly to explore 

and capture LD information without using a prior family information which might not be 

available. These methods are very popular in the human genetics field, however it is 

also heavily used in the field of animal genetics. The most prominent population-based 

software includes Beagle (Browning and Browning, 2007, 2009), Impute2 (Howie et al., 

2009), MaCH (Li et al., 2010), fastphase (Scheet and Stephens, 2006), and PLINK 

(Purcell et al., 2007). On the other hand, family-based or a combination of population 



17 

 

and family based imputation algorithms have been developed in the field of animal 

genetics. These algorithms uses a priori, the family information and subsequently LD 

information to infer un-typed markers. Commonly used software includes 

PHASEBOOK (LinkPHASE and DAGPHASE) (Druet and Georges, 2011), FImpute 

(Sargolzaei et al., 2012), AlphaImpute (Hickey et al., 2011), Findhap (VanRaden et al., 

2011a), and PEDIMPUTE (Nicolazzi et al., 2013).  

 In dairy cattle breeding programs, to reduce genotyping cost, the Illumina 

Bovine3K BeadChip (~2,900 SNPs) (Illumina Data Sheet, 2011) and Illumina Bovine7K 

BeadChip (~6,900 SNPs) (Boichard et al., 2012) were developed. Imputation 

accuracies from a lower density SNP panel to higher density SNP panels have been 

pretty accurate. Dassonneville et al. (2011) reported imputation error rate (allelic error 

rate) of 3.9%, when they imputed from 3K to 50K in French Holstein (reference 

population = 3,071; validation set = 966) using a combination of Beagle v2.1.3 and 

DAGPHASE. They also reported 5.5% error rate for Holstein bulls of the three Nordic 

countries (reference population = 3,058; validation set = 1,086). Increasing the 

Reference population with bulls from the EuroGenomics consortium reduced error rate 

to 2.1% in the French Holstein and 4.0% in Holstein bulls from the Nordic countries. 

Sargolzaei et al. (2011) also reported imputation error rate (imputing 3K to 50K) 

between 2.2% to 4.1% in three Canadian dairy cattle breeds (Hosltein, Jersey and 

Brown Swiss). Error rate was lower (between 0.53% to 1.03%) when the 7K SNP panel 

was used. Khatkar et al. (2012) also reported error rate of about 3.3% for Australian 

Holstein using Impute2. Recently, Ma et al. (2013) reported allelic error rate of 3.7% in 

Swedish and Finish Red dairy cattle for imputing 3K to 50K using beagle v3.3. Studies 

from three Italian dairy cattle breeds (Hosltein, Brown Swiss and Simmental) by 

Dimauro et al. (2013) showed a lower allelic imputation error rate for imputing 50K from 

3K and 7K compared to the results presented above. Error rate were about 10% for 3K 

and 5% for HD using Beagle v3.3. Others studies with varying subset of the 50K SNP 

markers shows error rate of about 2% to 8% (Weigel et al., 2010; Khatkar et al., 2012). 
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The above studies have been done using Bos taurus breeds, however, initial 

imputation results from Gyr, an important Bos indicus dairy cattle breed of Brazil shows 

slightly higher allelic error rate (7.0% for 3K and 4.0% for 7K using Beagle v4) than the 

Bos taurus breeds (Boison et al. (2014a), accepted accepted for the Proceedings of 

EAAP 2014). Differences in population structure, number of animals in reference 

population, choice of imputation algorithms or softwares have been explicitly shown to 

account for the observed differences across studies. Furthermore, the higher allelic 

error rate observed for Bos indicus breeds might also be due to ascertainment bias of 

the 3K, 7K and 50K Illumina SNP panels. This results in a small number of markers left 

on the lower density SNP panel (< 2,000 for 3K and < 5,000 for 7K) as tag SNPs with 

large inter-marker distances. 

 To increase accuracies of genomic breeding values more than what was 

observed with the 50K SNP panel for multi-breed genomic, purebreed and crossbreed 

evaluations, the BovineHD BeadChip (HD) was introduced. Additionally, the HD SNP 

panel was to help reduce the ascertainment bias observed for the 50K in Bos indicus 

breeds.  

 Since most animals were already genotyped on the 50K SNP panel, few but 

influential sires were suggested to be genotyped on the HD SNP panel and the rest of 

the population imputed. Goddard and Hayes (2009) suggested an algorithm for 

efficiently selecting individuals to be genotyped on HD, so that imputation accuracies 

for the rest of the population would be high. For most breeds, imputing HD genotypes 

from 50K have been high. Khatkar et al. (2012), Brøndum et al. (2012), Ma et al. 

(2013), Pausch et al. (2013), Schrooten et al. (2014), and Erbe et al. (2012), all have 

reported imputation accuracies between nearly zero and 7% when the reference 

population used in building haplotype library was at least 1/3 of the validation 

population. 

 However, accuracies of GEBVs of real data for HD genotypes have been shown 

to be smaller or sometimes lower than expected in comparison to using the 50K SNP 
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panel (Erbe et al., 2012; Hayes et al., 2012; Su et al., 2012) regardless of the trait and 

method of prediction for Bos taurus breeds. Initial results in Guzerat; a Bos indicus 

dairy cattle breed of Brazil, shown an increase in accuracies of about 4-12% for milk, 

fat and protein yield in kg (Boison et al. (2014b), accepted for the Proceedings of 

WCGALP 2014). The differences in the result might be attributed to the right-skewed 

nature (lot of markers in low frequency due to ascertainment bias) of the minor allele 

frequency distribution for the 50K observed in most Bos indicus breeds. The HD SNP 

panel, on the other hand, has markers with high MAF. 

 Interestingly, effect of imputation on “overall” estimate of accuracies of breeding 

values have been very little for imputing 7K to 50K (Khatkar et al., 2012; Dimauro et al., 

2013) and 50K to HD (Khatkar et al., 2012; Su et al., 2012), substantially lower for 3K 

to 50K (Dassonneville et al., 2011; Dimauro et al., 2013). The great reduction in 

accuracies of GEBV for the 3K to 50K have been attributed to the lower imputation 

accuracies observed, compared to the imputation accuracies obtained for 7K to 50K 

and 50K to HD. Low-density genotypes also are most commonly available for young 

animals with no phenotypes or cows with few phenotypes available, and the resulting 

low-accuracy PTA may be more responsible for the small gain, rather than the chip 

itself. Recently, Druet et al. (2014), have shown with a simulation study that, using 

imputed sequence data might follow the same trend like the imputed HD (very little loss 

in accuracy of GEBV). However, they point out in their paper that, effect of QTLs in low 

frequency might be estimated with lower accuracy than using actual sequence data. 

 The results from the studies available, suggests that, imputing genotypes from 

7K to 50K; 50K to HD is feasible and accurate enough for genomic evaluations.  

 

 Other uses of genomic information 

There are a number of applications for genomic information other than the 

prediction of high-reliability breeding values. Perhaps the most prominent recent 

application is the use of haplotypes in combination with next-generation sequencing 
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data to identify causal variants associated with recessives. The methodology for 

identifying recessive haplotypes by searching for a deficit of homozygotes was first 

described by VanRaden et al. (2011a), and its use in combination with sequence data 

to identify a causal variant (APAF1, associated with the HH1 haplotype) was reported 

in Adams et al. (2012). Additional details are provided in VanRaden et al. (2012). The 

US currently tracks 19 recessive haplotypes, and the causal variant for many of those 

conditions is known (Cole et al., 2013). 

While in theory genomic selection should result in lower rates of inbreeding 

(Daetwyler et al., 2007), that has not proven to be true in practice (e.g., VanRaden et 

al., 2011b). Sun et al. (2013) have showed that the use of genomic inbreeding 

coefficients rather than pedigree inbreeding in mating programs results in decreases in 

expected progeny inbreeding, and the economic value of using genomic relationships 

is >$3 million per year for US Holsteins when applied to all genotyped females. These 

results are consistent with the work of Pryce et al. (2012b), who also found that it is 

beneficial to consider genomic inbreeding when allocating mates. However, Cole and 

VanRaden (2011) showed that the best chromosomal genotypes generally consist of 

two copies of the same haplotype, even after adjustment for inbreeding, underscoring 

the tension between strategies that ensure maximal rates of genetic gain versus those 

that try to balance selection response against the need to maintain genetic diversity in 

the population. 
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