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ABSTRACT

Inbreeding depression (InD) refers to the mean reduc-
tion in trait values due to inbreeding, with detrimental
effects on survival, production, and reproduction traits
that have been observed in many natural and domesti-
cated populations. Despite efforts to measure how much
reduction in the traits of interest was caused by InD, the
genetic and molecular basis of these declines remains
unclear, particularly in dairy cattle. In this research, we
used a linear mixed model to partition the InD of 3 pro-
duction traits in 245,517 genotyped Jersey cows from the
Council on Dairy Cattle Breeding (Bowie, MD) database.
We mapped 9,532,696 imputed sequence variants into 5
functional annotation categories (i.e., intron, promoter,
genomic evolutionary rate profiling [GERP] constrained
elements, coding sequence, untranslated regions [UTR],
and remaining). We estimated the effects of InD attrib-
uted to each functional annotation category by a mixed
model method accounting for additive effects and relat-
edness through a genomic relationship matrix. The InD
for milk yield was significantly enriched for promoter
regions (enrichment ratio [R;] = 20.11, SE = 6.44), UTR
regions (R, = 57.96, SE = 16.62) and GERP regions (R;
= 35.91, SE = 7.00). The enrichment ratio R; represents
the disproportionate effect that annotation-specific
homozygosity has on the trait mean compared with the
magnitude of InD on the whole-genome level. Similarly,
protein yield showed significant enrichment of InD for
promoter regions (R, = 15.25, SE = 5.45), UTR regions
(R, =46.44, SE = 14.07), and GERP regions (R, = 32.73,
SE = 5.92), whereas fat yield showed significant enrich-
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ment of InD for UTR regions (R, = 40.20, SE = 12.77)
and GERP regions (R, = 28.72, SE = 5.34). Our results
indicate that certain functional annotations in dairy cattle
genome are disproportionally responsible for the detri-
mental effects of inbreeding, which could be vulnerable
to deleterious mutations. This research can help better
elucidate the genetic and molecular basis of InD in dairy
cattle genome and potentially guide breeding strategies
for genomic selection.
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INTRODUCTION

Inbreeding depression (InD), the reduction in trait per-
formance due to inbreeding, presents a notable challenge
across natural and managed populations (Charlesworth
and Charlesworth, 1987). This issue is particularly press-
ing in dairy cattle, as inbreeding negatively affects impor-
tant traits related to longevity, production, survival, and
reproduction (Fuerst-Waltl and Fuerst, 2012; Mugambe
et al., 2024). Despite efforts to measure the extent of trait
reduction caused by InD, the genetic and molecular basis
contributing to these declines are still not well under-
stood. Research focused on the genetic mechanisms be-
hind InD in livestock population is limited (Ferencakovi¢
et al., 2017), hindering the development of management
strategies in breeding programs (Cole, 2024).

Historically, the understanding and quantification
of InD have predominantly relied on pedigree-based
inbreeding coefficients, which track relatedness over
generations (Cassell et al., 2003). However, pedigree
inbreeding coefficients (Fp,;) often face challenges due
to incomplete data and their inability to capture Mende-
lian sampling variability. To address these limitations,
researchers have recently turned to genomic inbreeding
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coefficients, which use data derived from SNPs (Van-
Raden, 2008) or runs of homozygosity (ROH; Purfield
et al., 2012). These genomic measures provide a more
accurate representation of actual inbreeding levels
in individuals. However, genomic methods still have
shortcomings, particularly in distinguishing between
alleles that are identical by descent and those that are
identical by state (Caballero et al., 2021). Further ini-
tiatives to refine the estimation of inbreeding measures
have emphasized the importance of distinguishing be-
tween recent and ancient inbreeding events (Sumreddee
et al., 2020, 2021). Specifically, new methodologies
have emerged for classifying ROH by their length, as
this classification correlates with the recent inbreeding
occurrences (Doekes et al., 2019).

Recent progress in the assessment of inbreeding
provided a foundation for exploring the impacts of InD
within specific population, where the unique interplay
of genetic architecture and population dynamics shapes
inbreeding patterns. However, substantial gaps remain
in understanding the genetic and molecular basis of InD
in dairy cattle. Recent studies focusing on the refine-
ment of heritability partitioning through functional
annotation have established frameworks for studying
the genetic basis of complex traits in both human and
livestock populations (Edwards et al., 2015; Finucane et
al., 2015; Schneider et al., 2024). In human studies, for
instance, stratified linkage disequilibrium (LD) score
regression has been applied for partitioning heritability
by using summary statistics derived from GWAS (Gazal
et al., 2019). However, dairy cattle require alternative
strategies and methodologies due to their distinct popu-
lation history and genetic architectures, such as small
effective population sizes, higher levels of relatedness,
and long LD blocks (Jiang, 2024; Yuan et al., 2024).
Certain genomic regions may have a disproportionate
impact on InD. In dairy cattle populations, the extensive
LD blocks can obscure the effects of individual vari-
ants, complicating efforts to partition genetic contribu-
tions to InD throughout the genome (Qanbari, 2020).

One of the hypothesized genetic bases of InD states
that dominance effects, which represent the differences
in phenotypic value between heterozygotes and homo-
zygotes at specific loci, contribute to InD by revealing
recessive deleterious alleles that are normally masked
in heterozygous individuals as homozygosity increases
through inbreeding (Charmantier et al., 2014). Across
causal loci of traits under selection, directional domi-
nance arises when heterozygotes systematically deviate
from the midpoint of the 2 homozygotes, which means
heterozygosity confers a net performance advantage
and its loss under inbreeding produces inbreeding de-
pression (Maltecca et al., 2020). An enrichment of InD
within certain functional classes might indicate that
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those genomic regions harbor variants with stronger
directional dominance effects. However, particularly
with moderate sample sizes, identifying dominance
effects can be difficult and challenging using current
existing methods due to insufficient statistical power
(Boysen et al., 2013; Sun et al., 2014). Statistical power
plays a vital role in identifying and detecting the subtle
negative impact of deleterious alleles, particularly in
regions with low variant density. Without adequate
statistical power and appropriate methods, there is a
risk of false positives or the inability to differentiate
between causal and noncausal variants in regions as-
sociated with InD (Li et al., 2024).

Substantial advancements has been achieved in un-
derstanding the genetic basis of InD in humans and
model organisms (Charlesworth and Willis, 2009).
However, replicating these advancements in livestock
and natural populations has been challenging due to
their distinct population histories and evolutionary
implications. To address these limitations, we propose
leveraging established methodologies from human
genetics. For instance, Yengo et al. (2021) effectively
partitioned the average effect of InD across 11 traits
into 8 genomic regions, revealing an enrichment in
regions characterized by high recombination rates. On
the other hand, one study on ROH in cattle populations
has similarly highlighted region-specific homozygosity,
which could allow InD to be broken down into genomic
regions (Howard et al., 2015). However, genome-
wide analyses have demonstrated that InD effects are
uniformly distributed in certain cattle breeds, such as
the Dutch Holstein Friesian, indicating variation even
within closely related populations (Doekes et al., 2020).
These findings indicate that further investigation into
region-specific InD in dairy cattle could provide valu-
able insights for managing and mitigating InD while
simultaneously promoting genetic improvement.

Since the implementation of official genomic evalu-
ations for US cattle in 2009 (Wiggans et al., 2011), in-
breeding rates have increased substantially, especially
within Jersey and Holstein breeds. This trend persists
despite earlier forecasts suggesting that enhanced selec-
tion techniques would limit inbreeding levels (Daetwy-
ler et al., 2007). This acceleration is largely attributed
to the increased use of young bulls and reduction in
generation intervals (Guinan et al., 2023). The exten-
sive genomic and phenotypic datasets available from
sources such as the Council on Dairy Cattle Breeding
(CDCB; Bowie, MD) offer a valuable opportunity to
investigate the impact of inbreeding on a broad range
of production, reproductive, and fitness traits in dairy
cattle. For example, in US Jersey cattle, the observed
increase in average inbreeding coefficient is associated
with reduced productivity and survival, along with in-
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Table 1. Number, mean, SD, and median of yield deviation records for
milk, fat, and protein

Trait Yield deviation records Mean SD Median
Milk 242,103 -218.14  2,257.49  -201.054
Fat 239,063 136.17 82.25 135.86
Protein 239,501 70.26 60.49 70.64

creased replacement costs when inbreeding surpasses
critical thresholds (Lozada-Soto et al., 2022).

The primary objective of this research is to evaluate
whether genomic functional annotations contribute dis-
proportionately to InD in key production traits within
a US Jersey population. By partitioning the effects of
InD through functional annotations, we aim to assess
the effectiveness of our current methodology for ana-
lyzing the dairy cattle genome, and to identify improved
models that facilitate more accurate partitioning. Ad-
ditionally, our research focuses on exploring how dif-
ferent genomic parameters, including variant density,
LD levels, and minor allele frequency (MAF), affect
the partitioning of InD.

MATERIALS AND METHODS
Phenotypic Data

Production traits such as milk, fat, and protein yields
were the focus of the investigation. Large-scale phe-
notypic records on these economically important traits
revealed a substantial negative correlation between in-
breeding levels and production traits, establishing Jersey
as a suitable model for dissecting and partitioning InD
effects (Pryce et al., 2014). Furthermore, the limited
contribution of dominance effects to phenotypic variance
of reproductive traits in Jersey cattle restricts their ap-
plicability in the analysis of InD.

Adjusted lactation yield data for these 3 production
traits were obtained from CDCB for 248,488 Jersey
cows. These yield deviation (YD) records, reported as
weighted average yields in pounds, were adjusted by
CDCB to account for management group, permanent
environmental effects, and herd-sire interactions. This
adjustment process enhances unbiased assessment by
mitigating the influence of nongenetic factors or system-
atic effects (Wiggans and VanRaden, 1989).

To identify and remove potential outliers, the absolute
z-scores of the YD records were calculated. Observations
with absolute z-scores exceeding 2.5 were excluded,
resulting in a dataset of 241,918 Jersey cows for subse-
quent analyses. The summary statistics for the refined
dataset are presented in Table 1. To ensure uniformity
across traits, the data were standardized by centering the
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values through mean subtraction and scaling them by
dividing by the SD.

Genomic Data

A variety of low- to medium-density SNP panels was
applied in the genotyping process. The genotypic dataset
included 78,964 imputed SNPs that were incorporated
into genomic evaluations for US dairy cattle (Déru et al.,
2024). In addition, sequence imputation was conducted
using reference panels of run § and run 9 from the 1000
Bull Genomes Project (Hayes and Daetwyler, 2019). A
total number of 15,758,692 imputed whole-genome vari-
ants was obtained from the imputation. Both SNPs and
short insertions and deletions were included. The quality
control measures implemented for the imputed data using
PLINK 2 (Chang et al., 2015) involved the exclusion of
variants based on 2 criteria: (1) MAF of less than 1%
and (2) a Hardy—Weinberg equilibrium (HWE) P-value
lower than 107°. The quality of imputation was assessed
using an information metric (INFQO) score, which ranges
from 0 to 1, with values approaching 1 indicating a high
level of confidence in the imputed variants (Zheng et al.,
2015). With IMPUTE (version 2; Howie et al., 2009), the
INFO score is calculated by comparing the variance of
imputed genotype dosages to the theoretical maximum
variance under Hardy—Weinberg equilibrium (Stahl et al.,
2025). It estimates the proportion of statistical informa-
tion retained after imputation and is conceptually related
to Fisher information used in the score test framework
(Balakrishnan et al., 2007). In this study, only variants
with an INFO score exceeding 0.3 were retained, result-
ing in a total of 9,532,696 variants used for the calcula-
tion of inbreeding coefficients.

Inbreeding Coefficients

Our basic assumption is that each variant has an equal
and small contribution to InD, with an expectation of

E (ﬁj) = %, where f; is the contribution of SNP j to InD,

M represents the total number of variants, and b denotes
the genome-wide InD (Yengo et al., 2021). Under this
assumption, the genomic measure of inbreeding (Fyy;),
which is defined as the correlation between the parents’
uniting gametes (Wright, 1922), is a more suitable esti-
mator for interpreting InD. The calculation of F,; was
performed using PLINK 1.9 (Chang et al., 2015) with the
command --ibc, following the formula outlined by Yang
et al. (2011):

1M —(1+2p2.)5172. +2p]
M; 2pi(1—pi>

F =

UNI )
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where x; indicates the number of alternative alleles (0,
1, or 2) at the ith variant and p; is the frequency of the
alternative allele.

Functional Annotations

The study incorporated 5 annotation categories into its
analysis. Annotations for intron, promoter, genomic evo-
lutionary rate profiling (GERP) constrained elements,
coding sequence (CDS), and untranslated regions (UTR)
were extracted from the ARS-UCDI1.2 cattle reference
genome (Ensembl release 109; Rosen et al., 2020). Se-
quence variants were aligned with these 5 functional an-
notations as well as the remaining genomic regions. The
intron category includes all noncoding sequences that are
transcribed into precursor mRNA, with ~32.4% of the
variants (totaling 3,088,751) classified within this cate-
gory. The promoter category refers to DNA sequences
that initiate gene transcription located within 2 kb up-
stream of the transcription start site, with ~1.3% of the
variants (totaling 121,762) mapped to promoters. Con-
strained elements represent highly conserved regions
identified within a multiple sequence alignment through
GERP, which employs a permutation-based scoring
method. These regions show higher levels of sequence
conservation than expected by random chance, suggest-
ing their potential functional importance within the ge-
nome (Huber et al., 2020). Approximately 1.2% of the
total variants (totaling 115,275) were found within GERP
constrained elements. The CDS category includes DNA
sequences that correspond to the sequence of amino ac-
ids in proteins, with ~0.7% of the variants (totaling
70,838) mapped to CDS regions. The UTR category in-
cluded regions of mRNA, specifically the 5" and 3’ UTR,
which are generally not translated into proteins; ~0.5%
of the variants (totaling 44,268) were identified in UTR.
The annotation-level average inbreeding coefficient, de-
noted as Fk, was calculated based on the variants in each
category k, resulting in a total of 6 inbreeding coefficients
for each individual, which includes 5 annotation catego-
ries and one for the whole genome.

Models for Partitioning Inbreeding Depression

Our initial focus was on a linear model, assuming all
variants contribute to InD with small and minor effects.
This model can be represented as

M
y="b,+ ijlﬂij +e,

referred to as the infinitesimal SNP-based InD model
(ISIM), where y represents the YD of a quantitative trait
affected by InD; b, is the model intercept, indicating the
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mean YD of the quantitative trait; M denotes the total
number of variants included; f; represents the effect size
of variant j on InD; F; denotes the per-SNP inbreeding
coefficient for Varlant] quantifying the deviation of an
individual’s genotype from Hardy—Weinberg expecta-
tions at that locus, and was computed as Fyy; and e is
the residual term that captures all the other effects. In
ISIM, each SNP effect 6 can be written as [3 =b+ b ()

where bk(j) is the SNP effect on InD specific to func-

tional annotation k to which SNP j belongs. The ISIM
can be further expressed as

y =10 +Z (b+b )Fj+6,

y=10, +bz F—"_Zk D ekk te

Moreover, the whole-genome inbreeding coefficient is
the average of F:

which is based on the correlation between uniting gam-
etes, where g is whole genome. Similarly, the average
inbreeding coefficient for functional annotation & is

= 1
Fk = M_ijEkF’j’

where M, is the number of SNPs in functional annotation
M

k. Hence, ZF] = MFg and Zjeij =M, Fr.

j=1
M

By substituting EF and Z 'ekF7 into ISIM as follows:
y=b, +bz +ZA 1Zﬂk Lte
A~ K - =
y="b, +bMF, + Zk:lbkMka +e,
and writing b" = bM and I;k = I;kMk., we can get
A5 K=
y="b,+0'F, +Zk:1bka +e

Hence, the effect of InD was dissected by assuming that
variants within certain functional annotation categories
make disproportional contributions:
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y="b, +bF, +Z b F +e,

k=1F

referred to as the functional annotation partition model
(FAPM). In the FAPM, b is the overall contribution of
the whole genome-wide variants to InD; F, is the aver-
age inbreeding coefficient across all M variants; K is
the total number of functional annotations; b, is the
contribution of variants within annotation k& to InD; F;:,
the annotation-level average inbreeding coefficient,
represents the average inbreeding coefficient across all
variants in annotation k; and e is the residual term. This
model, akin to the one used by Yengo et al. (2021) to
partition InD in human population, is included here for
comparison purposes. Contrary to the to human popula-
tion, dairy cattle populations have a substantially
smaller effective population size due to the selective
breeding practices and the use of elite sires through ar-
tificial insemination. Consequently, individuals within
the dairy population are more closely related, leading to
a higher probability of sharing larger segments of their
genome, particularly haplotype blocks. This shared an-
cestry can complicate the process of accurately parti-
tioning the effects of InD. Hence, a linear mixed model
was employed, as follows:

K —
y=by+b0E, +%" b +g+te

referred to as the structured InD partitioning mixed
model (SIPMM), which is a genomic restricted maxi-
mum likelihood (GREML) framework designed to parti-
tion the effects of InD while considering the population
structure of dairy cattle. In this context, g represents ge-
nomic additive genetic effect, which follows a normal

distribution, g ~ N (0, Gag)
matrix (GRM), denoted as G, is computed using the for-

’

. The genomic relationship

77 . . .
mula G = , where Z is the matrix of standardized

g
genotypes (VanRaden, 2008) and M, indicates the total
number of SNPs used for calculating G.

All linear models were fitted using R 4.3.2 (R Core
Team, 2023), except for the SIPMM model, which was
employed through the SLEMM software (Cheng et al.,
2023). Whole-genome InD was estimated using both
FAPM and SIPMM, omitting the annotation partitioning

K
term Zk:lbk F,
Inbreeding Depression Enrichment Ratios

The concept of InD enrichment refers to the dispro-
portionate impact of homozygosity specific to certain
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annotation on the trait mean in contrast to the overall
impact of InD across the whole genome. When SNPs
are annotated into multiple functional annotations, the
SNP effect estimates can be confounded and inflated.
Hence, we need to adjust the raw estimates to account
for the overlapping. We first constructed an N x K bi-
nary annotation matrix A, where N is the total number
of SNPs, K is the number of functional annotations, and
Ay = 1 if the ith SNP is in the jth annotation. A cross-
product matrix X was used to quantify overlaps among
annotations: X = A’A, where the diagonal elements X
indicated the number of variants in annotation j, off-
diagonal elements x; indicated the number of variants
in both annotations j and k, and 7 is the matrix trans-
pose. Based on the key assumption in ISIM ﬂ =b+ b (i)

b;= by if SNP j belongs to annotation k, and b; is the sum
of the corresponding b, if SNP j belongs to multlple an-
notations. Hence, we used estimates b from FAPM or
SIPMM to infer SNP-specific estlmates b A per-SNP

InD estimate of a functional annotation category was
obtained by summing up b7. across all SNPs in the cate-

= —|, where

. k
Z b, and M, is the number of SNPs in that

jESNPsink

category. The whole-genome per-SNP InD estimate was

calculated by summing up I;j across all SNPs in the ge-

gory and dividing the sum by M, [l?k

S, =

- S
nome and dividing the sum by M|j =-1| where

S, = ZM b. and M is the total number of SNPs. The
j=17

enrichment ratio R, for each annotation k is defined as
the ratio of the per-SNP InD estimate of annotation & to

the whole-genome per-SNP InD estimate | R, = =
0
The SE of R, was approximated using the delta meth-

od (Yang et al., 2015). First, we computed the gradient
of the transformation matrix VG(X) of §,/S,. Second,

we approximated the SE of R, by the following formula:

~|VG(X) Cou(X) VG (x)'

SE[R,

where X is a vector of the adjusted model estimates; the
transformation function G converts X into a set of ratios;
VG(X) is the gradient of the transformation function;

and Cov(X) is the variance-covariance matrix of X. Last,
we divided SE[R,] by M;/M to match the normalization
in the enrichment ratio.

The average enrichment of InD across traits and its SE
were calculated as follows:
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o

lk T o LT 1

= Rk,SE[Rk] - \/F S5 Var (B, Var (R, )
1 t=1t'=1

where 7 is the total number of traits and Var(R,,) is the
sampling variance of R, for trait ¢. Similarly, Var(R; ) is
the sampling variance of R, for trait ¢" and r,, is the ge-
netic correlation between traits ¢ and ¢. When no genetic
correlation is considered (¢ = ¢’ and r,,, = 1), only vari-

ance terms remain, and the equation becomes
T
1
SE[R, | = FZV&T’(RM).
=1

Impact of Genomic Parameters on Inbreeding
Depression

A sensitivity analysis was performed to investigate the
impact of various genomic parameters used in the InD
partitioning analysis on InD enrichment. The imputed
sequence variants were filtered based on the following
criteria: (1) MAF classified into ranges of 0.01 to 0.1, 0.1
t00.2,0.2t00.3,0.3 t0 0.4, and 0.4 to 0.5; (2) LD-pruned
variants with r* <0.6 or r* <0.3 (where 1’ is the squared
correlation coefficient between allelic states at 2 loci);
and (3) a random sampling of 250k or 700k variants
that were evenly distributed along the genome. Linkage
disequilibrium pruning was performed with the PLINK
2 command --indep-pairwise, which specified a window
size of 50 variants and a step size of 5 variants. Random
sampling was carried out using the PLINK 2 command
--thin-count. The numbers of variants remained after each
filtering procedure are shown in Supplemental Table S1
(see Notes). Inbreeding coefficients Fyy; were calculated
using the filtered variants and subsequently incorporated
into FAPM and SIPMM models, along with their corre-
sponding null models.

The code used for data processing and statistical analy-
sis is available at https://github.com/cxu33/Genomic
-Partition-of-Inbreeding-Depression-Using-Functional
-Annotations.git.

RESULTS

Inbreeding Coefficients and Inbreeding
Depression Estimates

The summary statistics for the whole-genome F, and
the annotation-level inbreeding coefficients across each
functional annotation class, derived from sequence vari-
ants, are presented in Supplemental Table S2 (see Notes).
The whole genome and annotation-level inbreeding coef-
ficients, calculated as Fyy; exhibited a range from ap-
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proximately —0.1 to 0.5, with a mean value near —0.003
and an SD of ~0.3.

When the FAPM was applied to the whole-genome in-
breeding coefficients, significant positive effects of
whole-genome InD on production traits were identified.
The estimated regression coefficient b quantifies the
change in trait value corresponding to a one-unit increase
in the inbreeding coefficient. Specifically, the coefficient
was ~0.67 (SE=0.10, P <0.001) for milk yield, 1.84 (SE
=0.10, P <0.001) for fat yield, and 1.87 (SE =0.10, P <
0.001) for protein yield. These unexpectedly positive
coefficients likely stem from selective pressure acting on
the production traits. As a result, the influence of in-
breeding might give the impression of enhancing produc-
tion traits within the model, potentially masking the
usual negative biological consequences associated with
heightened levels of inbreeding. Upon the adjustment for
population structure, significant negative effects of
whole-genome inbreeding on all production traits were
identified (milk yield: b = —1.87, SE = 0.087, P < 0.001;
fat yield: bh=-2.52, SE=0.094, P < 0.001; protein yield:
b=-2.25,SE =0.091, P <0.001). These negative coef-
ficients suggest that once population structure was con-
sidered, inbreeding had a detrimental impact on produc-
tion traits, aligning with the expected deleterious effects
of inbreeding on productivity. The FAPM approach is
analogous to the model proposed by Yengo et al. (2021).
Their model exhibited robust performance in human
populations, likely due to the relatively lower levels of
inbreeding compared to dairy cattle populations.

Enrichment of Inbreeding Depression Within
Functional Annotations

Inbreeding depression refers to the reduction in fitness
or performance observed in offspring resulting from the
mating of closely related individuals. Enrichment of InD
within functional annotations indicates that inbreeding
within these regions, associated with particular biologi-
cal roles, contributes more to the adverse impacts than
would typically be anticipated. Conversely, a depletion
of InD enrichment suggests that in specific areas, the
negative consequences are less pronounced than ex-
pected. Our study examined the impact of InD on milk,
fat, and protein yields using FAPM and SIPMM models,
with a particular emphasis on whole-genome InD (F)
and specific functional annotations. The findings derived
from the FAPM model are shown in the supplemental
material (see Notes).

The application of SIPMM revealed notable adverse
impacts of inbreeding on milk yield across various ge-
nomic regions, specifically in promoter (5k =—-0.40, SE =
0.15, P=0.009), UTR (Ek =-0.45,SE=0.14, P=0.001),
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Figure 1. Comparisons of annotation-level inbreeding coefficients among different functional annotations between 2 individuals from the popula-

tion.

and GERP (l;]C = —0.73, SE = 0.14, P < 0.001) regions.
Significant enrichment of InD was observed in promoter
(R; = 20.11, SE = 6.44), UTR (R} = 57.96, SE = 16.62),
and GERP (R, = 35.91, SE = 7.00). For fat yield, signifi-
cant negative effects of inbreeding were identified for
the whole-genome (b = —0.63, SE = 0.13, P < 0.001), as

well as in UTR (b, = —0.43, SE = 0.15, P = 0.004) and
GERP (b, =—0.78, SE=0.15, P < 0.001) regions. Enrich-
ment of InD was significant in UTR (R, = 40.20, SE =
12.77) and GERP (R, = 28.72, SE = 5.34). For protein
yield, significant negative effects were noted in the pro-
moter (b, =—0.36, SE = 0.16, P = 0.02), UTR (5, = —0.44,
SE =0.14, P =0.003), and GERP (5k =-0.80, SE=0.15,
P<0.001) regions, with InD enrichment being significant
in promoter (R, =15.25, SE=5.45), UTR (R, =46.44, SE
=14.07), and GERP (R, =32.73, SE = 5.92). The average
InD enrichment level in promoter was 17.68, with an SE
of 2.71, computed across milk and protein yields with a
consideration of their genetic correlation. The average
InD enrichment levels and SE in UTR (R, = 48.20, SE =
6.55), and GERP (R, =32.45, SE = 2.75) were computed
across milk, fat, and protein yields accounting their ge-
netic correlations.

In dairy cattle breeding, the selection process for re-
productive animals plays a pivotal role in controlling
and managing inbreeding levels. Our study demonstrates
that the incorporation of functional annotation informa-
tion could improve the differentiation of individuals
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based on their annotation-level inbreeding coefficients
and the enrichment of InD within specific functional
annotations. Figure 1 illustrates the annotation-level
inbreeding coefficients across 5 functional annotations
for 2 Jersey cows (JER 76858386 and JER _84291594).
For instance, to mitigate the impact of InD on production
traits, a selection decision may favor JER 84291594,
which shows lower excessive homozygosity in the UTR
and GERP regions.

Impact of Genomic Parameters
on Inbreeding Depression

Impact of Variant Density on Inbreeding Depres-
sion. Table 2 presents the estimated F, and annotation-
specific InD, along with their significance levels de-
rived from SIPMM for all the production traits using
different numbers of variants. Figure 2 illustrates the
annotation-specific InD enrichment and SE for each
trait, as well as the average InD enrichment across
the production traits. Our analysis indicates that an
increase in the density of SNPs facilitates the detection
of significant InD enrichment in GERP.

The initial genomic parameter investigated was the
variant density used in InD partitioning analysis to de-
termine whether varying variant density impact on InD
enrichment. A random selection of ~250,000 and
700,000 uniformly distributed variants was used to es-
tablish a gradient in variant quantity. The whole genome
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Table 2. Significant (P < 0.05) annotation-level InD estimates (5k) and P-values from the structured InD partitioning mixed model using imputed 79k

chip, randomly sampled evenly distributed 250k, randomly sampled evenly distributed 700k, and sequence variants

Imputed 79k chip variant

Randomly sampled 250k variant

Randomly sampled 700k variant Imputed sequence variant

Annotation b, P-value b, P-value b, P-value b, P-value
Milk

F, —0.841 0.000

Intron —0.665 0.000 -1.132 0.000 —0.832 0.001

Promoter —-0.116 0.022 —0.243 0.018 —-0.293 0.023 —-0.400 0.009

GERP -0.422 0.000 —-0.722 0.000 —-0.730 0.000

CDS —0.118 0.015 —0.261 0.001 —0.246 0.033

UTR —0.108 0.004 —0.285 0.000 —0.434 0.000 —0.448 0.001
Fat

F, -0.916 0.000 —0.633 0.000

Intron —0.804 0.000 -1.209 0.000 —0.758 0.007

Promoter —0.145 0.008 —-0.260 0.019 —0.428 0.002

GERP —0.402 0.001 —0.844 0.000 —-0.778 0.000

CDS —0.157 0.003 -0.373 0.000

UTR —0.082 0.039 —-0.228 0.003 -0.370 0.001 —-0.429 0.004
Protein

Fy —-1.020 0.000

Intron —0.648 0.001 —1.082 0.000 —-0.830 0.002

Promoter —0.156 0.003 —-0.304 0.004 —-0.300 0.026 —0.362 0.023

GERP —0.402 0.000 —0.747 0.000 —0.798 0.000

CDS —0.163 0.001 —0.345 0.000

UTR —0.082 0.033 —0.268 0.000 —0.432 0.000 —0.436 0.003

ng = whole-genome inbreeding coefficient (average inbreeding coefficient across M variants).

InD estimates derived from SIPMM, based on imputed
79k SNP chip (milk yield: 5 = ~1.80, SE = 0.053, P <
0.001; fat yield: b = —2.03, SE = 0.057, P < 0.001; pro-
tein yield: b = —1.99, SE = 0.055, P < 0.001), were
consistent with those obtained from imputed whole-ge-
nome sequencing data. Upon increasing the number of
variants to 250k, a slight increase in InD estimates was
observed for all the production traits from SIPMM com-
pared to the estimates derived from imputed 79k SNP
chip (milk yield: b=-1.92, SE =0.073, P < 0.001; fat
yield: b =—2.43, SE = 0.078, P < 0.001; protein yield: b
=-2.22,SE=0.076, P <0.001). When the analysis was
conducted using randomly selected evenly distributed
700k variants, a slightly greater increase in InD esti-
mates was found for all the production traits from
SIPMM in comparison to the 250k estimates (milk
yield: b = —2.21, SE = 0.082, P < 0.001; fat yield: b =
—2.65, SE = 0.088, P < 0.001; protein yield: b = —2.47,
SE = 0.085, P < 0.001). In summary, the linear mixed
model shows minimal sensitivity to the variations in
SNP densities when it comes to estimating InD.
Impact of LD on Inbreeding Depression. The esti-
mated F, values along with the annotation-specific InD
and their significance levels derived from SIPMM for
all 3 production traits characterized by varying levels
of LD are presented in Table 3. Figure 3 illustrates the
annotation-specific InD enrichment and SE for each
trait as well as the average InD enrichment across 3
production traits. The InD enrichment estimated from
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randomly selected 60k variants was found to be com-
parable to that of the imputed 79k SNP chip with the
exception of a notable absence of InD enrichment in
UTR. This discrepancy may be attributed to the limited
representation of variants in the UTR region during the
random sampling. Additionally, the InD enrichment
estimates for CDS were found to be higher when using
the randomly selected 60k variants compared to the im-
puted 79k SNP chip. It was observed that varying the r*
parameters did not considerably influence the estimated
InD enrichment levels. However, LD pruning indicated
a low-level significant InD enrichment in the intronic
region when compared to the unpruned sequencing data.

In order to assess the impact of LD on the detection
and quantification of within-annotation InD enrichment,
a partitioning analysis was performed with LD-pruned
sequence variants. A gradient of LD levels was cre-
ated by varying the LD parameter r*. The LD pruning
technique effectively removes pairs of highly correlated
variants, leaving a set of independent variants for fur-
ther testing. Although this approach is widely adopted,
subsequent analyses revealed that some degree of re-
sidual correlation remained among markers, indicating
that our selected pruning parameters may not have been
sufficiently rigorous. Consequently, our dataset may
still contain some moderate levels of LD. However, be-
cause many published genome-wide studies use similar
or identical pruning parameters, our approach aligns
with established practices (Meyermans et al., 2020).
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Figure 2. Significant (P < 0.05) InD enrichment ratios (enrichment SE) among different variant density groups (imputed 79k chip, 250k, 700k,
sequence) for each trait and average InD enrichment ratios (enrichment SE) across traits. Var = variant density.

A random sample of ~60k variants was obtained from
sequence variants that are uniformly distributed across
the genome. This sampling served as a comparison to the
imputed 79k SNP chip, which exhibits strong associa-
tions with quantitative traits.

Impact of MAF on Inbreeding Depression. The esti-
mates of InD, along with their significance levels across
all MAF groups for the 3 traits, are presented in Table
4. Figure 4 illustrates the comparison of InD enrichment
across the various MAF groups. The MAF of variants
used in InD detection may influence the enrichment of
InD within particular functional regions. To explore
these effects on InD enrichment, a grouping methodol-
ogy was employed. Variants with MAF ranging from
0.4 to 0.5 were categorized as group gl, and those with
MAF between 0.01 and 0.1 were classified as group g5.
Intermediate MAF were represented in groups g2, g3,
and g4, corresponding to ranges of 0.3 to 0.4, 0.2 to 0.3,
and 0.1 to 0.2, respectively. The group with the rarest
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alleles exhibited less significant InD enrichment, likely
due to the limited statistical power associated with a
smaller sample size. In contrast, groups g3 and g4, which
encompass intermediate MAF from 0.1 to 0.3, demon-
strated significant InD enrichment in CDS, whereas both
the common alleles (MAF from 0.3 to 0.5) and the rare
alleles did not show such enrichment.

DISCUSSION

The challenge of partitioning InD in dairy cattle
populations is compounded by the need to adapt estima-
tion methods to specific genomic characteristics. The
influences of selection, purging, and genetic drift have
resulted in alterations of allele frequencies in dairy cattle
that diverge from those in human populations, where
most existing frameworks for partitioning InD derived
(Pemberton et al., 2012; Yengo et al., 2021). In particu-
lar, the strong directional selection for production-related
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Table 3. Significant (P < 0.05) annotation-level InD estimates (5k) and P-values from the structured InD partitioning mixed model using imputed 79k

chip, randomly sampled evenly distributed 60k, LD-pruned (r* < 0.3), LD-pruned (* < 0.6), and sequence variants

Imputed 79k chip variant ~ Randomly sampled 60k variant <03 ?<0.6 Imputed sequence variant

Annotation Z;k_ P-value Z;k_ P-value 61« P-value l;k P-value l;k P-value
Milk

F,S,1 —0.841 0.000 —0.784 0.000

Intron —0.665 0.000 -0.722 0.000 —-0.936 0.000 —0.888 0.000

Promoter —0.116 0.022 —0.103 0.011 —0.365 0.001 —0.469 0.000 —-0.400 0.009

GERP —-0.293 0.013 —0.481 0.000 —-0.730 0.000

CDS —0.118 0.015 —0.099 0.002

UTR —0.108 0.004 —0.194 0.015 —0.233 0.018 —0.448 0.001
Fat

F, -0.916 0.000 -1.097 0.000 —0.633 0.000

Intron —0.804 0.000 —0.612 0.000 —-1.029 0.000 —1.009 0.000

Promoter —0.145 0.008 —-0.160 0.000 —0.442 0.000 —0.508 0.000

GERP -0.270 0.033 -0.373 0.009 —-0.778 0.000

CDS —-0.157 0.003 —0.104 0.002

UTR —0.082 0.039 —-0.429 0.004
Protein

F, —-1.020 0.000 —1.028 0.000

Intron —0.648 0.001 —0.686 0.000 —0.808 0.001 —-0.829 0.001

Promoter —0.156 0.003 —0.096 0.022 —0.425 0.000 —0.453 0.001 —0.362 0.023

GERP -0.254 0.038 —0.449 0.001 —0.798 0.000

CDS —0.163 0.001 —0.105 0.001

UTR —0.082 0.033 —0.267 0.001 —0.278 0.007 —0.436 0.003

ng = whole-genome inbreeding coefficient (average inbreeding coefficient across M variants).

traits, such as milk yield, fat yield, and protein yield, has
uniquely shaped allele frequencies in dairy cattle, a phe-
nomenon not observed in humans (Qanbari, 2020).

By applying SIPMM to the whole genome and calcu-
lating annotation-specific inbreeding coefficients using
sequence data, a notable enrichment of InD was observed
within promoter regions, UTR, and GERP across 3 pro-
duction traits. It has been established that deleterious
variants are frequently enriched in functionally critical re-
gions, including promoters and UTR (Gazal et al., 2018).
Homozygous deleterious mutations in these regions can
disrupt gene function, leading to decreased fitness. Fi-
nucane et al. (2015) found that heritability enrichment
in conserved regions among mammals is considerably
greater across numerous traits than in coding regions,
highlighting the biological relevance of conserved re-
gions, despite many of their functions remaining poorly
characterized. Their results regarding heritability enrich-
ment align with our findings of InD enrichment in GERP
and the absence of InD enrichment in CDS.

The complexity of understanding variant causality in
noncoding regions is notable. Innovative approaches
and methodologies are being developed to assess the
effects of variants on gene functionality, such as muta-
tions located in the 3’-UTR of TRIM 14, which interfere
with miRNA binding sites and consequently affect gene
regulation (Griesemer et al., 2021). Schneider et al.
(2024) have demonstrated the critical role of UTR in
shaping milk and health traits through their impacts on
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mRNA stability, localization, and translation efficiency.
However, other research has indicated a lack of signifi-
cant association between UTR regions and milk yield
traits in dairy cattle (Koufariotis et al., 2014). Given
their evolutionary conservation and regulatory impor-
tance in mammals, UTR regions may harbor deleterious
mutations that reduce fitness when present in a homo-
zygous state, thereby contributing to InD even if these
mutations are not directly associated with phenotypic
traits (Chatterjee and Pal, 2009).

Higher inbreeding is not necessarily associated with
higher mutational load in genomic areas characterized
by elevated GERP scores, typically influenced by strong
purifying selection (Wootton et al., 2023). Mutations
occurring in these highly conserved regions, marked by
high GERP scores, are likely to result in more severe
detrimental effects.

The findings from our sensitivity analysis indicated
that whole-genome InD estimates derived from SIPMM
exhibit only minor variations as variant density increas-
es. Nevertheless, the observed trends in InD enrichment
across functional annotation categories reveal a tendency
for enrichment levels to rise with the utilization of denser
variant datasets. It is crucial to acknowledge that the in-
tegration of genomic data could enhance these estimates,
thereby improving the accuracy and biological signifi-
cance of InD partitioning. Whole-genome sequencing is
favored over chip data, as the currently used low- and
medium-density variant chips primarily capture com-
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Figure 3. Significant (P < 0.05) InD enrichment (enrichment SE) among different LD levels (r* < 0.3, r* < 0.6) for each trait and average InD

enrichment ratios (enrichment SE) across traits.

mon variants, which limits the coverage of functional
genomic regions, particularly regulatory elements. This
is critical, as InD may result from rare deleterious muta-
tions that become homozygous. The lower level of InD
enrichment observed may reflect the limited number of
variants available for detection.

The presence of unpruned data can obscure the con-
tributions of variants to InD due to the noise introduced
by recombination (Yengo et al., 2017), which ultimately
weakens the ability to identify InD enrichment. Con-
versely, although pruning decreases the number of mark-
ers, already constrained in specific functional annotation
areas like UTR, it may further hinder the detection of sig-
nificant InD enrichment in these regions. Future research
could benefit from utilizing a larger population with an
adequate number of sequenced individuals, such as those
found in Holstein populations, to enhance InD estimates.

Interestingly, InD enrichment was detected in the
CDS and intron categories when using imputed 79k SNP
chip, whereas this was not the case with whole-genome
sequencing data. This discrepancy could suggest that
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common alleles in CDS regions may not substantially
contribute to InD. Natural selection often eliminates del-
eterious mutations in protein-coding regions to preserve
the fitness of organisms, which results in a diminished
effect of CDS alleles on InD. Conversely, functionally
important regions outside of coding sequences may har-
bor rare or intermediate alleles with deleterious effects
that contribute more significantly to InD. In the study
of natural selection on deleterious alleles within coding
and noncoding regions among 2 passerine bird species,
Corcoran et al. (2017) found that purifying selection acts
more strongly on coding regions due to the critical role
these regions play in protein function. Consequently, del-
eterious mutations in coding sequences were more likely
to be purged from the population, leading to a decrease
in their overall frequency. Furthermore, the presence
of common alleles and the intricate interactions among
them can obscure signals of InD in whole-genome data-
sets, underscoring the necessity for meticulous filtering
and analysis. Therefore, it is crucial to exercise caution
when interpreting findings from different genomic data
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Table 4. Significant (P < 0.05) annotation-level InD estimates (5k) and P-values from the structured InD partitioning mixed model using variants
grouped based on MAF (gl: MAF 0.4-0.5, g2: MAF 0.3-0.4, g3: MAF 0.2-0.3, g4: MAF 0.1-0.2, g5: MAF 0.01-0.1)

gl g2 g3 g4 g5

Annotation Z;k P-value l;k_ P-value Z;k_ P-value 5k P-value l;k P-value
Milk

F,S,l -0.277 0.034 -0.302 0.027

Intron -0.405 0.000 -0.275 0.019

Promoter —0.346 0.000 —0.160 0.036

GERP -0.510 0.000 -0.529 0.000 —0.435 0.000 -0.512 0.000 —0.741 0.000

CDS —0.158 0.019 -0.325 0.000

UTR —-0.185 0.002 -0.159 0.008 —0.149 0.049
Fat

F, —0.447 0.002 —0.466 0.002 —0.486 0.002

Intron -0.370 0.001 —0.435 0.001

Promoter =0.190 0.009 -0.368 0.000

GERP —0.556 0.000 —0.545 0.000 -0.375 0.001 —0.506 0.000 -1.179 0.000

CDS -0.212 0.004 —0.343 0.000

UTR —0.138 0.032 —0.206 0.012 —0.295 0.043
Protein

F, —0.433 0.001 -0.326 0.022

Intron —0.380 0.000 -0.371 0.002

Promoter —0.388 0.000 —0.191 0.016

GERP -0.532 0.000 -0.517 0.000 —0.492 0.000 —0.596 0.000 —0.900 0.000

CDS —0.153 0.029 —0.334 0.000

UTR -0.147 0.020 -0.133 0.032 —0.208 0.008

ng = whole-genome inbreeding coefficient (average inbreeding coefficient across M variants).

sources, as differences in marker types and allele fre-
quencies may lead to distinct insights into the genetic
basis of InD.

CONCLUSIONS

Our study detected and quantified significant enrich-
ment of InD within functional genomic regions of US
Jersey cattle. Linear mixed models, which incorporate a
genomic relationship matrix, proved more effective for
partitioning and quantifying enrichment by accounting
for relatedness among individuals. Notably, promoter,
UTR, and GERP-conserved regions showed strong InD
enrichment, underscoring their importance in the mo-
lecular basis of inbreeding. The extent of enrichment
was influenced by marker density, linkage disequilib-
rium, and minor allele frequency; higher marker density
and LD pruning improved precision, emphasizing the
need for careful marker selection. These findings pro-
vide a foundation for tailoring inbreeding management
strategies to mitigate negative effects in key regulatory
regions while supporting genetic progress. Future work
should validate these results across additional traits,
integrate functional data such as transcriptomics or
epigenomics, and explore comparative analyses across
breeds and species to refine region-specific strategies
and enhance genomic selection in dairy cattle.
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Figure 4. Significant (P < 0.05) InD enrichment (enrichment SE) among different MAF groups (gl: MAF 0.4-0.5, g2: MAF 0.3-0.4, g3: MAF
0.2-0.3, g4: MAF 0.1-0.2, g5: MAF 0.01-0.1) for each trait and average InD enrichment ratios (enrichment SE) across traits.
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Nonstandard abbreviations used: CDCB = Coun-
cil on Dairy Cattle Breeding; CDS = coding sequence;
FAPM = functional annotation partition model; Fp,.,
= pedigree inbreeding coefficient; GERP = genomic
evolutionary rate profiling; GRM = genomic relation-
ship matrix; HWE = Hardy—Weinberg equilibrium; InD
= inbreeding depression; INFO = information metric;
ISIM = infinitesimal SNP-based InD model; LD = link-
age disequilibrium; MAF = minor allele frequency; R, =
enrichment ratio; ROH = runs of homozygosity; SIPMM
= structured InD partitioning mixed model; UTR = un-
translated region; Var = variant; YD = yield deviation.
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