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ABSTRACT

Inbreeding depression (InD) refers to the mean reduc-
tion in trait values due to inbreeding, with detrimental 
effects on survival, production, and reproduction traits 
that have been observed in many natural and domesti-
cated populations. Despite efforts to measure how much 
reduction in the traits of interest was caused by InD, the 
genetic and molecular basis of these declines remains 
unclear, particularly in dairy cattle. In this research, we 
used a linear mixed model to partition the InD of 3 pro-
duction traits in 245,517 genotyped Jersey cows from the 
Council on Dairy Cattle Breeding (Bowie, MD) database. 
We mapped 9,532,696 imputed sequence variants into 5 
functional annotation categories (i.e., intron, promoter, 
genomic evolutionary rate profiling [GERP] constrained 
elements, coding sequence, untranslated regions [UTR], 
and remaining). We estimated the effects of InD attrib-
uted to each functional annotation category by a mixed 
model method accounting for additive effects and relat-
edness through a genomic relationship matrix. The InD 
for milk yield was significantly enriched for promoter 
regions (enrichment ratio [Rk] = 20.11, SE = 6.44), UTR 
regions (Rk = 57.96, SE = 16.62) and GERP regions (Rk 
= 35.91, SE = 7.00). The enrichment ratio Rk represents 
the disproportionate effect that annotation-specific 
homozygosity has on the trait mean compared with the 
magnitude of InD on the whole-genome level. Similarly, 
protein yield showed significant enrichment of InD for 
promoter regions (Rk = 15.25, SE = 5.45), UTR regions 
(Rk = 46.44, SE = 14.07), and GERP regions (Rk = 32.73, 
SE = 5.92), whereas fat yield showed significant enrich-

ment of InD for UTR regions (Rk = 40.20, SE = 12.77) 
and GERP regions (Rk = 28.72, SE = 5.34). Our results 
indicate that certain functional annotations in dairy cattle 
genome are disproportionally responsible for the detri-
mental effects of inbreeding, which could be vulnerable 
to deleterious mutations. This research can help better 
elucidate the genetic and molecular basis of InD in dairy 
cattle genome and potentially guide breeding strategies 
for genomic selection.
Key words: inbreeding depression, dairy cattle, 
functional annotation

INTRODUCTION

Inbreeding depression (InD), the reduction in trait per-
formance due to inbreeding, presents a notable challenge 
across natural and managed populations (Charlesworth 
and Charlesworth, 1987). This issue is particularly press-
ing in dairy cattle, as inbreeding negatively affects impor-
tant traits related to longevity, production, survival, and 
reproduction (Fuerst-Waltl and Fuerst, 2012; Mugambe 
et al., 2024). Despite efforts to measure the extent of trait 
reduction caused by InD, the genetic and molecular basis 
contributing to these declines are still not well under-
stood. Research focused on the genetic mechanisms be-
hind InD in livestock population is limited (Ferenčaković 
et al., 2017), hindering the development of management 
strategies in breeding programs (Cole, 2024).

Historically, the understanding and quantification 
of InD have predominantly relied on pedigree-based 
inbreeding coefficients, which track relatedness over 
generations (Cassell et al., 2003). However, pedigree 
inbreeding coefficients (FPed) often face challenges due 
to incomplete data and their inability to capture Mende-
lian sampling variability. To address these limitations, 
researchers have recently turned to genomic inbreeding 
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coefficients, which use data derived from SNPs (Van-
Raden, 2008) or runs of homozygosity (ROH; Purfield 
et al., 2012). These genomic measures provide a more 
accurate representation of actual inbreeding levels 
in individuals. However, genomic methods still have 
shortcomings, particularly in distinguishing between 
alleles that are identical by descent and those that are 
identical by state (Caballero et al., 2021). Further ini-
tiatives to refine the estimation of inbreeding measures 
have emphasized the importance of distinguishing be-
tween recent and ancient inbreeding events (Sumreddee 
et al., 2020, 2021). Specifically, new methodologies 
have emerged for classifying ROH by their length, as 
this classification correlates with the recent inbreeding 
occurrences (Doekes et al., 2019).

Recent progress in the assessment of inbreeding 
provided a foundation for exploring the impacts of InD 
within specific population, where the unique interplay 
of genetic architecture and population dynamics shapes 
inbreeding patterns. However, substantial gaps remain 
in understanding the genetic and molecular basis of InD 
in dairy cattle. Recent studies focusing on the refine-
ment of heritability partitioning through functional 
annotation have established frameworks for studying 
the genetic basis of complex traits in both human and 
livestock populations (Edwards et al., 2015; Finucane et 
al., 2015; Schneider et al., 2024). In human studies, for 
instance, stratified linkage disequilibrium (LD) score 
regression has been applied for partitioning heritability 
by using summary statistics derived from GWAS (Gazal 
et al., 2019). However, dairy cattle require alternative 
strategies and methodologies due to their distinct popu-
lation history and genetic architectures, such as small 
effective population sizes, higher levels of relatedness, 
and long LD blocks (Jiang, 2024; Yuan et al., 2024). 
Certain genomic regions may have a disproportionate 
impact on InD. In dairy cattle populations, the extensive 
LD blocks can obscure the effects of individual vari-
ants, complicating efforts to partition genetic contribu-
tions to InD throughout the genome (Qanbari, 2020).

One of the hypothesized genetic bases of InD states 
that dominance effects, which represent the differences 
in phenotypic value between heterozygotes and homo-
zygotes at specific loci, contribute to InD by revealing 
recessive deleterious alleles that are normally masked 
in heterozygous individuals as homozygosity increases 
through inbreeding (Charmantier et al., 2014). Across 
causal loci of traits under selection, directional domi-
nance arises when heterozygotes systematically deviate 
from the midpoint of the 2 homozygotes, which means 
heterozygosity confers a net performance advantage 
and its loss under inbreeding produces inbreeding de-
pression (Maltecca et al., 2020). An enrichment of InD 
within certain functional classes might indicate that 

those genomic regions harbor variants with stronger 
directional dominance effects. However, particularly 
with moderate sample sizes, identifying dominance 
effects can be difficult and challenging using current 
existing methods due to insufficient statistical power 
(Boysen et al., 2013; Sun et al., 2014). Statistical power 
plays a vital role in identifying and detecting the subtle 
negative impact of deleterious alleles, particularly in 
regions with low variant density. Without adequate 
statistical power and appropriate methods, there is a 
risk of false positives or the inability to differentiate 
between causal and noncausal variants in regions as-
sociated with InD (Li et al., 2024).

Substantial advancements has been achieved in un-
derstanding the genetic basis of InD in humans and 
model organisms (Charlesworth and Willis, 2009). 
However, replicating these advancements in livestock 
and natural populations has been challenging due to 
their distinct population histories and evolutionary 
implications. To address these limitations, we propose 
leveraging established methodologies from human 
genetics. For instance, Yengo et al. (2021) effectively 
partitioned the average effect of InD across 11 traits 
into 8 genomic regions, revealing an enrichment in 
regions characterized by high recombination rates. On 
the other hand, one study on ROH in cattle populations 
has similarly highlighted region-specific homozygosity, 
which could allow InD to be broken down into genomic 
regions (Howard et al., 2015). However, genome-
wide analyses have demonstrated that InD effects are 
uniformly distributed in certain cattle breeds, such as 
the Dutch Holstein Friesian, indicating variation even 
within closely related populations (Doekes et al., 2020). 
These findings indicate that further investigation into 
region-specific InD in dairy cattle could provide valu-
able insights for managing and mitigating InD while 
simultaneously promoting genetic improvement.

Since the implementation of official genomic evalu-
ations for US cattle in 2009 (Wiggans et al., 2011), in-
breeding rates have increased substantially, especially 
within Jersey and Holstein breeds. This trend persists 
despite earlier forecasts suggesting that enhanced selec-
tion techniques would limit inbreeding levels (Daetwy-
ler et al., 2007). This acceleration is largely attributed 
to the increased use of young bulls and reduction in 
generation intervals (Guinan et al., 2023). The exten-
sive genomic and phenotypic datasets available from 
sources such as the Council on Dairy Cattle Breeding 
(CDCB; Bowie, MD) offer a valuable opportunity to 
investigate the impact of inbreeding on a broad range 
of production, reproductive, and fitness traits in dairy 
cattle. For example, in US Jersey cattle, the observed 
increase in average inbreeding coefficient is associated 
with reduced productivity and survival, along with in-
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creased replacement costs when inbreeding surpasses 
critical thresholds (Lozada-Soto et al., 2022).

The primary objective of this research is to evaluate 
whether genomic functional annotations contribute dis-
proportionately to InD in key production traits within 
a US Jersey population. By partitioning the effects of 
InD through functional annotations, we aim to assess 
the effectiveness of our current methodology for ana-
lyzing the dairy cattle genome, and to identify improved 
models that facilitate more accurate partitioning. Ad-
ditionally, our research focuses on exploring how dif-
ferent genomic parameters, including variant density, 
LD levels, and minor allele frequency (MAF), affect 
the partitioning of InD.

MATERIALS AND METHODS

Phenotypic Data

Production traits such as milk, fat, and protein yields 
were the focus of the investigation. Large-scale phe-
notypic records on these economically important traits 
revealed a substantial negative correlation between in-
breeding levels and production traits, establishing Jersey 
as a suitable model for dissecting and partitioning InD 
effects (Pryce et al., 2014). Furthermore, the limited 
contribution of dominance effects to phenotypic variance 
of reproductive traits in Jersey cattle restricts their ap-
plicability in the analysis of InD.

Adjusted lactation yield data for these 3 production 
traits were obtained from CDCB for 248,488 Jersey 
cows. These yield deviation (YD) records, reported as 
weighted average yields in pounds, were adjusted by 
CDCB to account for management group, permanent 
environmental effects, and herd-sire interactions. This 
adjustment process enhances unbiased assessment by 
mitigating the influence of nongenetic factors or system-
atic effects (Wiggans and VanRaden, 1989).

To identify and remove potential outliers, the absolute 
z-scores of the YD records were calculated. Observations 
with absolute z-scores exceeding 2.5 were excluded, 
resulting in a dataset of 241,918 Jersey cows for subse-
quent analyses. The summary statistics for the refined 
dataset are presented in Table 1. To ensure uniformity 
across traits, the data were standardized by centering the 

values through mean subtraction and scaling them by 
dividing by the SD.

Genomic Data

A variety of low- to medium-density SNP panels was 
applied in the genotyping process. The genotypic dataset 
included 78,964 imputed SNPs that were incorporated 
into genomic evaluations for US dairy cattle (Déru et al., 
2024). In addition, sequence imputation was conducted 
using reference panels of run 8 and run 9 from the 1000 
Bull Genomes Project (Hayes and Daetwyler, 2019). A 
total number of 15,758,692 imputed whole-genome vari-
ants was obtained from the imputation. Both SNPs and 
short insertions and deletions were included. The quality 
control measures implemented for the imputed data using 
PLINK 2 (Chang et al., 2015) involved the exclusion of 
variants based on 2 criteria: (1) MAF of less than 1% 
and (2) a Hardy–Weinberg equilibrium (HWE) P-value 
lower than 10−6. The quality of imputation was assessed 
using an information metric (INFO) score, which ranges 
from 0 to 1, with values approaching 1 indicating a high 
level of confidence in the imputed variants (Zheng et al., 
2015). With IMPUTE (version 2; Howie et al., 2009), the 
INFO score is calculated by comparing the variance of 
imputed genotype dosages to the theoretical maximum 
variance under Hardy–Weinberg equilibrium (Stahl et al., 
2025). It estimates the proportion of statistical informa-
tion retained after imputation and is conceptually related 
to Fisher information used in the score test framework 
(Balakrishnan et al., 2007). In this study, only variants 
with an INFO score exceeding 0.3 were retained, result-
ing in a total of 9,532,696 variants used for the calcula-
tion of inbreeding coefficients.

Inbreeding Coefficients

Our basic assumption is that each variant has an equal 
and small contribution to InD, with an expectation of 

E
b

Mjβ( ) = , where βj is the contribution of SNP j to InD, 

M represents the total number of variants, and b denotes 
the genome-wide InD (Yengo et al., 2021). Under this 
assumption, the genomic measure of inbreeding (FUNI), 
which is defined as the correlation between the parents’ 
uniting gametes (Wright, 1922), is a more suitable esti-
mator for interpreting InD. The calculation of FUNI was 
performed using PLINK 1.9 (Chang et al., 2015) with the 
command --ibc, following the formula outlined by Yang 
et al. (2011):

F
M

x p x p

p pUNI
i

M
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=
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Table 1. Number, mean, SD, and median of yield deviation records for 
milk, fat, and protein

Trait Yield deviation records Mean SD Median

Milk 242,103 −218.14 2,257.49 −201.054
Fat 239,063 136.17 82.25 135.86
Protein 239,501 70.26 60.49 70.64
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where xi indicates the number of alternative alleles (0, 
1, or 2) at the ith variant and pi is the frequency of the 
alternative allele.

Functional Annotations

The study incorporated 5 annotation categories into its 
analysis. Annotations for intron, promoter, genomic evo-
lutionary rate profiling (GERP) constrained elements, 
coding sequence (CDS), and untranslated regions (UTR) 
were extracted from the ARS-UCD1.2 cattle reference 
genome (Ensembl release 109; Rosen et al., 2020). Se-
quence variants were aligned with these 5 functional an-
notations as well as the remaining genomic regions. The 
intron category includes all noncoding sequences that are 
transcribed into precursor mRNA, with ~32.4% of the 
variants (totaling 3,088,751) classified within this cate-
gory. The promoter category refers to DNA sequences 
that initiate gene transcription located within 2 kb up-
stream of the transcription start site, with ~1.3% of the 
variants (totaling 121,762) mapped to promoters. Con-
strained elements represent highly conserved regions 
identified within a multiple sequence alignment through 
GERP, which employs a permutation-based scoring 
method. These regions show higher levels of sequence 
conservation than expected by random chance, suggest-
ing their potential functional importance within the ge-
nome (Huber et al., 2020). Approximately 1.2% of the 
total variants (totaling 115,275) were found within GERP 
constrained elements. The CDS category includes DNA 
sequences that correspond to the sequence of amino ac-
ids in proteins, with ~0.7% of the variants (totaling 
70,838) mapped to CDS regions. The UTR category in-
cluded regions of mRNA, specifically the 5′ and 3′ UTR, 
which are generally not translated into proteins; ~0.5% 
of the variants (totaling 44,268) were identified in UTR. 
The annotation-level average inbreeding coefficient, de-
noted as Fk , was calculated based on the variants in each 
category k, resulting in a total of 6 inbreeding coefficients 
for each individual, which includes 5 annotation catego-
ries and one for the whole genome.

Models for Partitioning Inbreeding Depression

Our initial focus was on a linear model, assuming all 
variants contribute to InD with small and minor effects. 
This model can be represented as

y b F e
j

M

j j= + +
=∑0 1
β ,

referred to as the infinitesimal SNP-based InD model 
(ISIM), where y represents the YD of a quantitative trait 
affected by InD; b0 is the model intercept, indicating the 

mean YD of the quantitative trait; M denotes the total 
number of variants included; βj represents the effect size 
of variant j on InD; Fj denotes the per-SNP inbreeding 
coefficient for variant j, quantifying the deviation of an 
individual’s genotype from Hardy–Weinberg expecta-
tions at that locus, and was computed as FUNI; and e is 
the residual term that captures all the other effects. In 
ISIM, each SNP effect β̂j  can be written as ˆ ˆ ,βj k j

b b= + ( )  
where b̂

k j( ) is the SNP effect on InD specific to func-
tional annotation k to which SNP j belongs. The ISIM 
can be further expressed as

y b b b F e
j

M

k j j= + +( ) +
= ( )∑0 1

ˆ ,

y b b F b F e
j

M

j k

K

j k k j
= + + +

= = ∈∑ ∑ ∑0 1 1
ˆ .

Moreover, the whole-genome inbreeding coefficient is 
the average of Fj:

ˆ ,F
M

Fg
j

M

j=
=
∑
1

1

which is based on the correlation between uniting gam-
etes, where g is whole genome. Similarly, the average 
inbreeding coefficient for functional annotation k is

F
M

Fk

k
j k j

 =
∈∑

1
,

where Mk is the number of SNPs in functional annotation 

k. Hence, 
j

M

j gF MF
=
∑ =
1

ˆ  and 
j k j k kF M F
∈∑ =  .

By substituting 
j

M

jF
=
∑

1

 and 
j k j
F

∈∑  into ISIM as follows:

y b b F b F e
j

M

j k

K

j k k j
= + + +

= = ∈∑ ∑ ∑0 1 1
ˆ ,

y b bMF b M F eg k

K

k k k= + + +
=∑0 1

ˆ ˆ ,

and writing b′ = bM and ˆ ˆ ,b b Mk k k=  we can get

y b b F b F eg k

K

k k= + + +′
=∑0 1

ˆ ˆ .

Hence, the effect of InD was dissected by assuming that 
variants within certain functional annotation categories 
make disproportional contributions:
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y b bF b F eg k

K

k k= + + +
=∑0 1
� ,

referred to as the functional annotation partition model 
(FAPM). In the FAPM, b is the overall contribution of 
the whole genome-wide variants to InD; Fg is the aver-
age inbreeding coefficient across all M variants; K is 
the total number of functional annotations; bk is the 
contribution of variants within annotation k to InD; Fk , 
the annotation-level average inbreeding coefficient, 
represents the average inbreeding coefficient across all 
variants in annotation k; and e is the residual term. This 
model, akin to the one used by Yengo et al. (2021) to 
partition InD in human population, is included here for 
comparison purposes. Contrary to the to human popula-
tion, dairy cattle populations have a substantially 
smaller effective population size due to the selective 
breeding practices and the use of elite sires through ar-
tificial insemination. Consequently, individuals within 
the dairy population are more closely related, leading to 
a higher probability of sharing larger segments of their 
genome, particularly haplotype blocks. This shared an-
cestry can complicate the process of accurately parti-
tioning the effects of InD. Hence, a linear mixed model 
was employed, as follows:

y b bF b Fg k

K

k k= + + + +
=∑0 1
� ,g e

referred to as the structured InD partitioning mixed 
model (SIPMM), which is a genomic restricted maxi-
mum likelihood (GREML) framework designed to parti-
tion the effects of InD while considering the population 
structure of dairy cattle. In this context, g represents ge-
nomic additive genetic effect, which follows a normal 
distribution, g ~ , .N 0 2Gσa( )  The genomic relationship 
matrix (GRM), denoted as G, is computed using the for-

mula G ZZ= '
Mg

, where Z is the matrix of standardized 

genotypes (VanRaden, 2008) and Mg indicates the total 
number of SNPs used for calculating G.

All linear models were fitted using R 4.3.2 (R Core 
Team, 2023), except for the SIPMM model, which was 
employed through the SLEMM software (Cheng et al., 
2023). Whole-genome InD was estimated using both 
FAPM and SIPMM, omitting the annotation partitioning 
term 

k

K

k kb F
=∑ 1
� .

Inbreeding Depression Enrichment Ratios

The concept of InD enrichment refers to the dispro-
portionate impact of homozygosity specific to certain 

annotation on the trait mean in contrast to the overall 
impact of InD across the whole genome. When SNPs 
are annotated into multiple functional annotations, the 
SNP effect estimates can be confounded and inflated. 
Hence, we need to adjust the raw estimates to account 
for the overlapping. We first constructed an N × K bi-
nary annotation matrix A, where N is the total number 
of SNPs, K is the number of functional annotations, and 
Aij = 1 if the ith SNP is in the jth annotation. A cross-
product matrix X was used to quantify overlaps among 
annotations: X = ATA, where the diagonal elements xij 
indicated the number of variants in annotation j,  off-
diagonal elements xjk indicated the number of variants 
in both annotations j and k, and T is the matrix trans-
pose. Based on the key assumption in ISIM, ˆ ˆ ,βj k j

b b= + ( )  
bj = bk if SNP j belongs to annotation k, and bj is the sum 
of the corresponding bk if SNP j belongs to multiple an-
notations. Hence, we used estimates b̂k  from FAPM or 
SIPMM to infer SNP-specific estimates ˆ .bj  A per-SNP 
InD estimate of a functional annotation category was 
obtained by summing up b̂j  across all SNPs in the cate-

gory and dividing the sum by M b
S

Mk k
k

k

=










, where 

S bk
j SNPs in k

j=
∈
∑
� �

ˆ  and Mk is the number of SNPs in that 

category. The whole-genome per-SNP InD estimate was 
calculated by summing up b̂j  across all SNPs in the ge-

nome and dividing the sum by M b
S

M0
0=











, where 

S b
j

M

j0 1
=

=∑ ˆ  and M is the total number of SNPs. The 
enrichment ratio Rk for each annotation k is defined as 
the ratio of the per-SNP InD estimate of annotation k to 

the whole-genome per-SNP InD estimate R
b

bk
k=











0

.

The SE of Rk was approximated using the delta meth-
od (Yang et al., 2015). First, we computed the gradient 
of the transformation matrix ∇ ( )G X  of Sk/S0. Second, 
we approximated the SE of Rk by the following formula:

SE R Covk

T


 ≈ ∇ ( ) ( )∇ ( )G X X G X ,

where X is a vector of the adjusted model estimates; the 
transformation function G converts X into a set of ratios; 
∇ ( )G X  is the gradient of the transformation function; 
and Cov(X) is the variance-covariance matrix of X. Last, 
we divided SE[Rk] by Mk/M to match the normalization 
in the enrichment ratio.

The average enrichment of InD across traits and its SE 
were calculated as follows:
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R

T
R R

T
r Var R Var R

k

T

k k
t

T

t

T

t t k t k t

=





= ( )∑ ∑∑

= =′
′ ′

1 1

1
2

1 1

, , , ,SE (( )





1
2 ,

where T is the total number of traits and Var(Rk,t) is the 
sampling variance of Rk for trait t. Similarly, Var(Rk,t′) is 
the sampling variance of Rk for trait t′ and rt,t′ is the ge-
netic correlation between traits t and t′. When no genetic 
correlation is considered (t = t′ and rt,t′ = 1), only vari-
ance terms remain, and the equation becomes 

SE R
T

Var Rk
t

T

k t



 = ( )

=
∑

1
2

1
, .

Impact of Genomic Parameters on Inbreeding 
Depression

A sensitivity analysis was performed to investigate the 
impact of various genomic parameters used in the InD 
partitioning analysis on InD enrichment. The imputed 
sequence variants were filtered based on the following 
criteria: (1) MAF classified into ranges of 0.01 to 0.1, 0.1 
to 0.2, 0.2 to 0.3, 0.3 to 0.4, and 0.4 to 0.5; (2) LD-pruned 
variants with r2 <0.6 or r2 <0.3 (where r2 is the squared 
correlation coefficient between allelic states at 2 loci); 
and (3) a random sampling of 250k or 700k variants 
that were evenly distributed along the genome. Linkage 
disequilibrium pruning was performed with the PLINK 
2 command --indep-pairwise, which specified a window 
size of 50 variants and a step size of 5 variants. Random 
sampling was carried out using the PLINK 2 command 
--thin-count. The numbers of variants remained after each 
filtering procedure are shown in Supplemental Table S1 
(see Notes). Inbreeding coefficients FUNI were calculated 
using the filtered variants and subsequently incorporated 
into FAPM and SIPMM models, along with their corre-
sponding null models.

The code used for data processing and statistical analy-
sis is available at https:​/​/​github​.com/​cxu33/​Genomic​
-Partition​-of​-Inbreeding​-Depression​-Using​-Functional​
-Annotations​.git.

RESULTS

Inbreeding Coefficients and Inbreeding  
Depression Estimates

The summary statistics for the whole-genome Fg and 
the annotation-level inbreeding coefficients across each 
functional annotation class, derived from sequence vari-
ants, are presented in Supplemental Table S2 (see Notes). 
The whole genome and annotation-level inbreeding coef-
ficients, calculated as FUNI, exhibited a range from ap-

proximately −0.1 to 0.5, with a mean value near −0.003 
and an SD of ~0.3.

When the FAPM was applied to the whole-genome in-
breeding coefficients, significant positive effects of 
whole-genome InD on production traits were identified. 
The estimated regression coefficient b̂  quantifies the 
change in trait value corresponding to a one-unit increase 
in the inbreeding coefficient. Specifically, the coefficient 
was ~0.67 (SE = 0.10, P < 0.001) for milk yield, 1.84 (SE 
= 0.10, P < 0.001) for fat yield, and 1.87 (SE = 0.10, P < 
0.001) for protein yield. These unexpectedly positive 
coefficients likely stem from selective pressure acting on 
the production traits. As a result, the influence of in-
breeding might give the impression of enhancing produc-
tion traits within the model, potentially masking the 
usual negative biological consequences associated with 
heightened levels of inbreeding. Upon the adjustment for 
population structure, significant negative effects of 
whole-genome inbreeding on all production traits were 
identified (milk yield: b̂  = −1.87, SE = 0.087, P < 0.001; 
fat yield: b̂  = −2.52, SE = 0.094, P < 0.001; protein yield: 
b̂  = −2.25, SE = 0.091, P < 0.001). These negative coef-
ficients suggest that once population structure was con-
sidered, inbreeding had a detrimental impact on produc-
tion traits, aligning with the expected deleterious effects 
of inbreeding on productivity. The FAPM approach is 
analogous to the model proposed by Yengo et al. (2021). 
Their model exhibited robust performance in human 
populations, likely due to the relatively lower levels of 
inbreeding compared to dairy cattle populations.

Enrichment of Inbreeding Depression Within 
Functional Annotations

Inbreeding depression refers to the reduction in fitness 
or performance observed in offspring resulting from the 
mating of closely related individuals. Enrichment of InD 
within functional annotations indicates that inbreeding 
within these regions, associated with particular biologi-
cal roles, contributes more to the adverse impacts than 
would typically be anticipated. Conversely, a depletion 
of InD enrichment suggests that in specific areas, the 
negative consequences are less pronounced than ex-
pected. Our study examined the impact of InD on milk, 
fat, and protein yields using FAPM and SIPMM models, 
with a particular emphasis on whole-genome InD (Fg) 
and specific functional annotations. The findings derived 
from the FAPM model are shown in the supplemental 
material (see Notes).

The application of SIPMM revealed notable adverse 
impacts of inbreeding on milk yield across various ge-
nomic regions, specifically in promoter (b̂k  = −0.40, SE = 
0.15, P = 0.009), UTR (b̂k  = −0.45, SE = 0.14, P = 0.001), 
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and GERP (b̂k  = −0.73, SE = 0.14, P < 0.001) regions. 
Significant enrichment of InD was observed in promoter 
(Rk = 20.11, SE = 6.44), UTR (Rk = 57.96, SE = 16.62), 
and GERP (Rk = 35.91, SE = 7.00). For fat yield, signifi-
cant negative effects of inbreeding were identified for 
the whole-genome (b̂  = −0.63, SE = 0.13, P < 0.001), as 
well as in UTR (b̂k  = −0.43, SE = 0.15, P = 0.004) and 
GERP (b̂k  = −0.78, SE = 0.15, P < 0.001) regions. Enrich-
ment of InD was significant in UTR (Rk = 40.20, SE = 
12.77) and GERP (Rk = 28.72, SE = 5.34). For protein 
yield, significant negative effects were noted in the pro-
moter (b̂k  = −0.36, SE = 0.16, P = 0.02), UTR (b̂k  = −0.44, 
SE = 0.14, P = 0.003), and GERP (b̂k  = −0.80, SE = 0.15, 
P<0.001) regions, with InD enrichment being significant 
in promoter (Rk = 15.25, SE = 5.45), UTR (Rk = 46.44, SE 
= 14.07), and GERP (Rk = 32.73, SE = 5.92). The average 
InD enrichment level in promoter was 17.68, with an SE 
of 2.71, computed across milk and protein yields with a 
consideration of their genetic correlation. The average 
InD enrichment levels and SE in UTR (Rk = 48.20, SE = 
6.55), and GERP (Rk = 32.45, SE = 2.75) were computed 
across milk, fat, and protein yields accounting their ge-
netic correlations.

In dairy cattle breeding, the selection process for re-
productive animals plays a pivotal role in controlling 
and managing inbreeding levels. Our study demonstrates 
that the incorporation of functional annotation informa-
tion could improve the differentiation of individuals 

based on their annotation-level inbreeding coefficients 
and the enrichment of InD within specific functional 
annotations. Figure 1 illustrates the annotation-level 
inbreeding coefficients across 5 functional annotations 
for 2 Jersey cows (JER_76858386 and JER_84291594). 
For instance, to mitigate the impact of InD on production 
traits, a selection decision may favor JER_84291594, 
which shows lower excessive homozygosity in the UTR 
and GERP regions.

Impact of Genomic Parameters  
on Inbreeding Depression

Impact of Variant Density on Inbreeding Depres-
sion. Table 2 presents the estimated Fg and annotation-
specific InD, along with their significance levels de-
rived from SIPMM for all the production traits using 
different numbers of variants. Figure 2 illustrates the 
annotation-specific InD enrichment and SE for each 
trait, as well as the average InD enrichment across 
the production traits. Our analysis indicates that an 
increase in the density of SNPs facilitates the detection 
of significant InD enrichment in GERP.

The initial genomic parameter investigated was the 
variant density used in InD partitioning analysis to de-
termine whether varying variant density impact on InD 
enrichment. A random selection of ~250,000 and 
700,000 uniformly distributed variants was used to es-
tablish a gradient in variant quantity. The whole genome 
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Figure 1. Comparisons of annotation-level inbreeding coefficients among different functional annotations between 2 individuals from the popula-
tion.
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InD estimates derived from SIPMM, based on imputed 
79k SNP chip (milk yield: b̂  = −1.80, SE = 0.053, P < 
0.001; fat yield: b̂  = −2.03, SE = 0.057, P < 0.001; pro-
tein yield: b̂  = −1.99, SE = 0.055, P < 0.001), were 
consistent with those obtained from imputed whole-ge-
nome sequencing data. Upon increasing the number of 
variants to 250k, a slight increase in InD estimates was 
observed for all the production traits from SIPMM com-
pared to the estimates derived from imputed 79k SNP 
chip (milk yield: b̂  = −1.92, SE = 0.073, P < 0.001; fat 
yield: b̂  = −2.43, SE = 0.078, P < 0.001; protein yield: b̂ 
= −2.22, SE = 0.076, P < 0.001). When the analysis was 
conducted using randomly selected evenly distributed 
700k variants, a slightly greater increase in InD esti-
mates was found for all the production traits from 
SIPMM in comparison to the 250k estimates (milk 
yield: b̂  = −2.21, SE = 0.082, P < 0.001; fat yield: b̂  = 
−2.65, SE = 0.088, P < 0.001; protein yield: b̂  = −2.47, 
SE = 0.085, P < 0.001). In summary, the linear mixed 
model shows minimal sensitivity to the variations in 
SNP densities when it comes to estimating InD.

Impact of LD on Inbreeding Depression. The esti-
mated Fg values along with the annotation-specific InD 
and their significance levels derived from SIPMM for 
all 3 production traits characterized by varying levels 
of LD are presented in Table 3. Figure 3 illustrates the 
annotation-specific InD enrichment and SE for each 
trait as well as the average InD enrichment across 3 
production traits. The InD enrichment estimated from 

randomly selected 60k variants was found to be com-
parable to that of the imputed 79k SNP chip with the 
exception of a notable absence of InD enrichment in 
UTR. This discrepancy may be attributed to the limited 
representation of variants in the UTR region during the 
random sampling. Additionally, the InD enrichment 
estimates for CDS were found to be higher when using 
the randomly selected 60k variants compared to the im-
puted 79k SNP chip. It was observed that varying the r2 
parameters did not considerably influence the estimated 
InD enrichment levels. However, LD pruning indicated 
a low-level significant InD enrichment in the intronic 
region when compared to the unpruned sequencing data.

In order to assess the impact of LD on the detection 
and quantification of within-annotation InD enrichment, 
a partitioning analysis was performed with LD-pruned 
sequence variants. A gradient of LD levels was cre-
ated by varying the LD parameter r2. The LD pruning 
technique effectively removes pairs of highly correlated 
variants, leaving a set of independent variants for fur-
ther testing. Although this approach is widely adopted, 
subsequent analyses revealed that some degree of re-
sidual correlation remained among markers, indicating 
that our selected pruning parameters may not have been 
sufficiently rigorous. Consequently, our dataset may 
still contain some moderate levels of LD. However, be-
cause many published genome-wide studies use similar 
or identical pruning parameters, our approach aligns 
with established practices (Meyermans et al., 2020). 
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Table 2. Significant (P < 0.05) annotation-level InD estimates b̂k( ) and P-values from the structured InD partitioning mixed model using imputed 79k 
chip, randomly sampled evenly distributed 250k, randomly sampled evenly distributed 700k, and sequence variants

Annotation

Imputed 79k chip variant

 

Randomly sampled 250k variant

 

Randomly sampled 700k variant

 

Imputed sequence variant

b̂k P-value b̂k P-value b̂k P-value b̂k P-value

Milk                
  Fg

1 −0.841 0.000            
  Intron −0.665 0.000 −1.132 0.000 −0.832 0.001    
  Promoter −0.116 0.022 −0.243 0.018 −0.293 0.023 −0.400 0.009
  GERP     −0.422 0.000 −0.722 0.000 −0.730 0.000
  CDS −0.118 0.015 −0.261 0.001 −0.246 0.033    
  UTR −0.108 0.004 −0.285 0.000 −0.434 0.000 −0.448 0.001
Fat                
  Fg −0.916 0.000         −0.633 0.000
  Intron −0.804 0.000 −1.209 0.000 −0.758 0.007    
  Promoter −0.145 0.008 −0.260 0.019 −0.428 0.002    
  GERP     −0.402 0.001 −0.844 0.000 −0.778 0.000
  CDS −0.157 0.003 −0.373 0.000        
  UTR −0.082 0.039 −0.228 0.003 −0.370 0.001 −0.429 0.004
Protein                
  Fg −1.020 0.000            
  Intron −0.648 0.001 −1.082 0.000 −0.830 0.002    
  Promoter −0.156 0.003 −0.304 0.004 −0.300 0.026 −0.362 0.023
  GERP     −0.402 0.000 −0.747 0.000 −0.798 0.000
  CDS −0.163 0.001 −0.345 0.000        
  UTR −0.082 0.033 −0.268 0.000 −0.432 0.000 −0.436 0.003
1Fg = whole-genome inbreeding coefficient (average inbreeding coefficient across M variants).
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A random sample of ~60k variants was obtained from 
sequence variants that are uniformly distributed across 
the genome. This sampling served as a comparison to the 
imputed 79k SNP chip, which exhibits strong associa-
tions with quantitative traits.

Impact of MAF on Inbreeding Depression. The esti-
mates of InD, along with their significance levels across 
all MAF groups for the 3 traits, are presented in Table 
4. Figure 4 illustrates the comparison of InD enrichment 
across the various MAF groups. The MAF of variants 
used in InD detection may influence the enrichment of 
InD within particular functional regions. To explore 
these effects on InD enrichment, a grouping methodol-
ogy was employed. Variants with MAF ranging from 
0.4 to 0.5 were categorized as group g1, and those with 
MAF between 0.01 and 0.1 were classified as group g5. 
Intermediate MAF were represented in groups g2, g3, 
and g4, corresponding to ranges of 0.3 to 0.4, 0.2 to 0.3, 
and 0.1 to 0.2, respectively. The group with the rarest 

alleles exhibited less significant InD enrichment, likely 
due to the limited statistical power associated with a 
smaller sample size. In contrast, groups g3 and g4, which 
encompass intermediate MAF from 0.1 to 0.3, demon-
strated significant InD enrichment in CDS, whereas both 
the common alleles (MAF from 0.3 to 0.5) and the rare 
alleles did not show such enrichment.

DISCUSSION

The challenge of partitioning InD in dairy cattle 
populations is compounded by the need to adapt estima-
tion methods to specific genomic characteristics. The 
influences of selection, purging, and genetic drift have 
resulted in alterations of allele frequencies in dairy cattle 
that diverge from those in human populations, where 
most existing frameworks for partitioning InD derived 
(Pemberton et al., 2012; Yengo et al., 2021). In particu-
lar, the strong directional selection for production-related 
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Figure 2. Significant (P < 0.05) InD enrichment ratios (enrichment SE) among different variant density groups (imputed 79k chip, 250k, 700k, 
sequence) for each trait and average InD enrichment ratios (enrichment SE) across traits. Var = variant density.
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traits, such as milk yield, fat yield, and protein yield, has 
uniquely shaped allele frequencies in dairy cattle, a phe-
nomenon not observed in humans (Qanbari, 2020).

By applying SIPMM to the whole genome and calcu-
lating annotation-specific inbreeding coefficients using 
sequence data, a notable enrichment of InD was observed 
within promoter regions, UTR, and GERP across 3 pro-
duction traits. It has been established that deleterious 
variants are frequently enriched in functionally critical re-
gions, including promoters and UTR (Gazal et al., 2018). 
Homozygous deleterious mutations in these regions can 
disrupt gene function, leading to decreased fitness. Fi-
nucane et al. (2015) found that heritability enrichment 
in conserved regions among mammals is considerably 
greater across numerous traits than in coding regions, 
highlighting the biological relevance of conserved re-
gions, despite many of their functions remaining poorly 
characterized. Their results regarding heritability enrich-
ment align with our findings of InD enrichment in GERP 
and the absence of InD enrichment in CDS.

The complexity of understanding variant causality in 
noncoding regions is notable. Innovative approaches 
and methodologies are being developed to assess the 
effects of variants on gene functionality, such as muta-
tions located in the 3′-UTR of TRIM14, which interfere 
with miRNA binding sites and consequently affect gene 
regulation (Griesemer et al., 2021). Schneider et al. 
(2024) have demonstrated the critical role of UTR in 
shaping milk and health traits through their impacts on 

mRNA stability, localization, and translation efficiency. 
However, other research has indicated a lack of signifi-
cant association between UTR regions and milk yield 
traits in dairy cattle (Koufariotis et al., 2014). Given 
their evolutionary conservation and regulatory impor-
tance in mammals, UTR regions may harbor deleterious 
mutations that reduce fitness when present in a homo-
zygous state, thereby contributing to InD even if these 
mutations are not directly associated with phenotypic 
traits (Chatterjee and Pal, 2009).

Higher inbreeding is not necessarily associated with 
higher mutational load in genomic areas characterized 
by elevated GERP scores, typically influenced by strong 
purifying selection (Wootton et al., 2023). Mutations 
occurring in these highly conserved regions, marked by 
high GERP scores, are likely to result in more severe 
detrimental effects.

The findings from our sensitivity analysis indicated 
that whole-genome InD estimates derived from SIPMM 
exhibit only minor variations as variant density increas-
es. Nevertheless, the observed trends in InD enrichment 
across functional annotation categories reveal a tendency 
for enrichment levels to rise with the utilization of denser 
variant datasets. It is crucial to acknowledge that the in-
tegration of genomic data could enhance these estimates, 
thereby improving the accuracy and biological signifi-
cance of InD partitioning. Whole-genome sequencing is 
favored over chip data, as the currently used low- and 
medium-density variant chips primarily capture com-
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Table 3. Significant (P < 0.05) annotation-level InD estimates b̂k( ) and P-values from the structured InD partitioning mixed model using imputed 79k 
chip, randomly sampled evenly distributed 60k, LD-pruned (r2 < 0.3), LD-pruned (r2 < 0.6), and sequence variants

Annotation

Imputed 79k chip variant

 

Randomly sampled 60k variant

 

r2 < 0.3

 

r2 < 0.6

 

Imputed sequence variant

b̂k P-value b̂k P-value b̂k P-value b̂k P-value b̂k P-value

Milk                    
  Fg

1 −0.841 0.000 −0.784 0.000            
  Intron −0.665 0.000 −0.722 0.000 −0.936 0.000 −0.888 0.000    
  Promoter −0.116 0.022 −0.103 0.011 −0.365 0.001 −0.469 0.000 −0.400 0.009
  GERP         −0.293 0.013 −0.481 0.000 −0.730 0.000
  CDS −0.118 0.015 −0.099 0.002            
  UTR −0.108 0.004     −0.194 0.015 −0.233 0.018 −0.448 0.001
Fat                    
  Fg −0.916 0.000 −1.097 0.000         −0.633 0.000
  Intron −0.804 0.000 −0.612 0.000 −1.029 0.000 −1.009 0.000    
  Promoter −0.145 0.008 −0.160 0.000 −0.442 0.000 −0.508 0.000    
  GERP         −0.270 0.033 −0.373 0.009 −0.778 0.000
  CDS −0.157 0.003 −0.104 0.002            
  UTR −0.082 0.039             −0.429 0.004
Protein                    
  Fg −1.020 0.000 −1.028 0.000            
  Intron −0.648 0.001 −0.686 0.000 −0.808 0.001 −0.829 0.001    
  Promoter −0.156 0.003 −0.096 0.022 −0.425 0.000 −0.453 0.001 −0.362 0.023
  GERP         −0.254 0.038 −0.449 0.001 −0.798 0.000
  CDS −0.163 0.001 −0.105 0.001            
  UTR −0.082 0.033     −0.267 0.001 −0.278 0.007 −0.436 0.003
1Fg = whole-genome inbreeding coefficient (average inbreeding coefficient across M variants).
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mon variants, which limits the coverage of functional 
genomic regions, particularly regulatory elements. This 
is critical, as InD may result from rare deleterious muta-
tions that become homozygous. The lower level of InD 
enrichment observed may reflect the limited number of 
variants available for detection.

The presence of unpruned data can obscure the con-
tributions of variants to InD due to the noise introduced 
by recombination (Yengo et al., 2017), which ultimately 
weakens the ability to identify InD enrichment. Con-
versely, although pruning decreases the number of mark-
ers, already constrained in specific functional annotation 
areas like UTR, it may further hinder the detection of sig-
nificant InD enrichment in these regions. Future research 
could benefit from utilizing a larger population with an 
adequate number of sequenced individuals, such as those 
found in Holstein populations, to enhance InD estimates.

Interestingly, InD enrichment was detected in the 
CDS and intron categories when using imputed 79k SNP 
chip, whereas this was not the case with whole-genome 
sequencing data. This discrepancy could suggest that 

common alleles in CDS regions may not substantially 
contribute to InD. Natural selection often eliminates del-
eterious mutations in protein-coding regions to preserve 
the fitness of organisms, which results in a diminished 
effect of CDS alleles on InD. Conversely, functionally 
important regions outside of coding sequences may har-
bor rare or intermediate alleles with deleterious effects 
that contribute more significantly to InD. In the study 
of natural selection on deleterious alleles within coding 
and noncoding regions among 2 passerine bird species, 
Corcoran et al. (2017) found that purifying selection acts 
more strongly on coding regions due to the critical role 
these regions play in protein function. Consequently, del-
eterious mutations in coding sequences were more likely 
to be purged from the population, leading to a decrease 
in their overall frequency. Furthermore, the presence 
of common alleles and the intricate interactions among 
them can obscure signals of InD in whole-genome data-
sets, underscoring the necessity for meticulous filtering 
and analysis. Therefore, it is crucial to exercise caution 
when interpreting findings from different genomic data 
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Figure 3. Significant (P < 0.05) InD enrichment (enrichment SE) among different LD levels (r2 < 0.3, r2 < 0.6) for each trait and average InD 
enrichment ratios (enrichment SE) across traits.
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sources, as differences in marker types and allele fre-
quencies may lead to distinct insights into the genetic 
basis of InD.

CONCLUSIONS

Our study detected and quantified significant enrich-
ment of InD within functional genomic regions of US 
Jersey cattle. Linear mixed models, which incorporate a 
genomic relationship matrix, proved more effective for 
partitioning and quantifying enrichment by accounting 
for relatedness among individuals. Notably, promoter, 
UTR, and GERP-conserved regions showed strong InD 
enrichment, underscoring their importance in the mo-
lecular basis of inbreeding. The extent of enrichment 
was influenced by marker density, linkage disequilib-
rium, and minor allele frequency; higher marker density 
and LD pruning improved precision, emphasizing the 
need for careful marker selection. These findings pro-
vide a foundation for tailoring inbreeding management 
strategies to mitigate negative effects in key regulatory 
regions while supporting genetic progress. Future work 
should validate these results across additional traits, 
integrate functional data such as transcriptomics or 
epigenomics, and explore comparative analyses across 
breeds and species to refine region-specific strategies 
and enhance genomic selection in dairy cattle.
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Table 4. Significant (P < 0.05) annotation-level InD estimates b̂k( ) and P-values from the structured InD partitioning mixed model using variants 
grouped based on MAF (g1: MAF 0.4–0.5, g2: MAF 0.3–0.4, g3: MAF 0.2–0.3, g4: MAF 0.1–0.2, g5: MAF 0.01–0.1)

Annotation

g1

 

g2

 

g3

 

g4

 

g5

b̂k P-value b̂k P-value b̂k P-value b̂k P-value b̂k P-value

Milk                    
  Fg

1     −0.277 0.034 −0.302 0.027        
  Intron −0.405 0.000     −0.275 0.019        
  Promoter     −0.346 0.000 −0.160 0.036        
  GERP −0.510 0.000 −0.529 0.000 −0.435 0.000 −0.512 0.000 −0.741 0.000
  CDS         −0.158 0.019 −0.325 0.000    
  UTR −0.185 0.002     −0.159 0.008 −0.149 0.049    
Fat                    
  Fg     −0.447 0.002 −0.466 0.002 −0.486 0.002    
  Intron −0.370 0.001     −0.435 0.001        
  Promoter −0.190 0.009 −0.368 0.000            
  GERP −0.556 0.000 −0.545 0.000 −0.375 0.001 −0.506 0.000 −1.179 0.000
  CDS         −0.212 0.004 −0.343 0.000    
  UTR     −0.138 0.032     −0.206 0.012 −0.295 0.043
Protein                    
  Fg     −0.433 0.001 −0.326 0.022        
  Intron −0.380 0.000     −0.371 0.002        
  Promoter     −0.388 0.000 −0.191 0.016        
  GERP −0.532 0.000 −0.517 0.000 −0.492 0.000 −0.596 0.000 −0.900 0.000
  CDS         −0.153 0.029 −0.334 0.000    
  UTR −0.147 0.020 −0.133 0.032     −0.208 0.008    
1Fg = whole-genome inbreeding coefficient (average inbreeding coefficient across M variants).
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https://www.ebi.ac.uk/ena/browser/view/PRJEB56689
https://www.ebi.ac.uk/ena/browser/view/PRJEB56689
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Nonstandard abbreviations used: CDCB = Coun-
cil on Dairy Cattle Breeding; CDS = coding sequence; 
FAPM = functional annotation partition model; FPed 
= pedigree inbreeding coefficient; GERP = genomic 
evolutionary rate profiling; GRM = genomic relation-
ship matrix; HWE = Hardy–Weinberg equilibrium; InD 
= inbreeding depression; INFO = information metric; 
ISIM = infinitesimal SNP-based InD model; LD = link-
age disequilibrium; MAF = minor allele frequency; Rk = 
enrichment ratio; ROH = runs of homozygosity; SIPMM 
= structured InD partitioning mixed model; UTR = un-
translated region; Var = variant; YD = yield deviation.
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