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ABSTRACT

Selective breeding has been practiced since domestica-
tion, but early breeders commonly selected on appear-
ance (e.g., coat color) rather than performance traits
(e.g., milk yield). A breeding index converts informa-
tion about several traits into a single number, typically
representing total economic merit, that can be used for
selection or to predict an animal’s own performance. The
first USDA selection index released in 1971 included
only milk and fat yield, whereas the 2025 revision of the
Lifetime Net Merit (NM$) index includes 17 traits and
composites (weighted averages of other traits). Many
dairy farmers, semen salespeople, sire analysts, and
genetics consultants (expressed in personal communica-
tions) are concerned that, as the number of traits in the
index grows, it becomes less effective because selection
response is “diluted” (the efficiency of the index de-
creases). What actually happens is that the response in
individual traits changes, but the overall index response
(total economic merit) does not. Correlated response to
selection for 24 traits and composites currently evalu-
ated by the Council on Dairy Cattle Breeding (Bowie,
MD) and Holstein Association USA (Brattleboro, VT)
was calculated for 12 USDA selection indices and their
changes over time were examined. Indices including only
yield (milk, fat, and protein) traits had the highest heri-
tabilities (0.272—0.290), whereas NM$ had heritabilities
ranging from 0.188 in 2010 to 0.243 in 2025. Rates of
genetic gain have changed over time but are in favorable
directions for most traits. Although selection response
has slowed for some traits (e.g., production) as new traits
were added to the index, they remain favorable (posi-
tive). Other traits, most notably fertility, now have favor-
able trends when they had unfavorable (negative) trends
in earlier versions of the selection index. There is some
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reranking within birth year cohorts for both genetic merit
and reliabilities because older animals were selected us-
ing different criteria than contemporary animals. Rank
correlations are high across indices, ranging from 0.8746
to 0.9994, meaning that sires rank similarly despite the
increasing complexity of the index. Selection gains for
fat, protein, productive life, and BW composite have the
greatest economic value regardless of how responses are
calculated. These results show that properly constructed
selection indices produce desirable rates and directions
of gain for many traits at once.

Key words: breeding program, genetic improvement,
selection indices

INTRODUCTION

Selection indices are important tools in dairy cattle
breeding because they allow information about many
traits of importance to be combined into a single value
for ranking animals and making breeding decisions. The
need for such a tool was recognized very early in the
history of modern animal breeding, when Hazel and Lush
(1942) applied the method of Smith (1934) to the im-
provement of economically important traits of livestock.
The ideal breeding objective for dairy cattle remains a
popular topic, and has been reviewed periodically (Hazel
et al., 1994; Philipsson et al., 1994; VanRaden, 2004;
Miglior et al., 2005; Shook, 2006), but there is no single
selection objective that is best for all populations or all
herds within a population. The construction of selection
indices in the United States is complex and involves many
participants (Cole et al., 2021). The first economic index
for US dairy cattle was constructed in 1971 and included
only milk and fat yield in the selection criterion, and
the portfolio of traits included has evolved steadily over
time to include 17 individual traits and composites in the
most recent revision of the index (Table 1). It is clear that
the number of traits included in selection indices will
continue to increase as the number of economically and
socially important phenotypes increases (Cole and Van-
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Raden, 2018; Cole et al., 2020), but many in the industry
are concerned that the addition of too many traits to the
selection objective will reduce the efficiency of the in-
dex, resulting in rates of gain that are not as fast as those
seen before the new traits were added. Users of the index
worry that the continual addition of new traits will result
in lower rates of gain for some core set of traits that, in
their eyes, has the greatest economic value. Although the
mathematics show clearly that the fastest rates of gain
for total economic merit are achieved when the index
includes all traits that affect lifetime profitability (e.g.,
Gjedrem, 1972; Yamada et al., 1975), mathematical argu-
ments are not persuasive to everyone.

The goal of this paper is to compare attributes of
USDA selection indices used over the last 50 yr to ad-
dress the concern—expressed by many professionals in
the breeding industry and by farmers alike—that there
are now so many traits included in modern selection indi-
ces that they are no longer useful as tools for population
improvement. Correlated responses to selection, index
heritability, and correlations among predicted transmit-
ting abilities (PTA) and reliabilities (REL) will be exam-
ined for 12 indices, including the April 2025 revision to
Lifetime Net Merit (NMS$,,5). These values will be used
to address (1) the idea that selection pressure has been
“diluted,” (2) the genetic progress we can expect from
selection on the index, and (3) how changes in the index
affect the ranking of bulls over time.

MATERIALS AND METHODS

The correlated response to selection for 24 traits and
type composites included in NMS$,p,s (VanRaden et
al., 2025) and gestation length (GL) from selection on
earlier indices was computed for 12 different selection
goals used in the United States from 1971 to the pres-
ent: predicted difference dollars (PD$; Dickinson et al.,
1971), milk-fat-protein dollars (Norman et al., 2010),
cheese yield dollars (CY$; Norman, 1986), 1994 Life-
time Net Merit (NM$,994; VanRaden and Wiggans, ),
2000 Lifetime Net Merit (NMS$,45; VanRaden, 2000),
2006 Lifetime Net Merit (NM$,496; VanRaden and Multi-
State Project S-1008, 2006), 2010 Lifetime Net Merit
(NMS$,419; Cole et al., 2010), 2014 Lifetime Net Merit
(NMS$,p14; VanRaden and Cole, 2014), 2017 Lifetime
Net Merit (NM$,4;7; VanRaden, 2017), 2018 Lifetime
Net Merit (NMS$,4,5; VanRaden et al., 2018), 2021 Life-
time Net Merit (NMS$,4,;; VanRaden et al., 2021), and
NM$,0,5 (VanRaden et al., 2025). The 2003 version of
Lifetime Net Merit (VanRaden and Seykora, 2003) was
not included in this study because correlations were
available only for the calving ability (CAS) composite
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and not the individual calving ease and stillbirth traits
used to compute CAS.

The traits included in the analysis were milk, fat, and
protein yields (all measured in pounds), productive life
(PL; mo), SCS (log,), body weight composite (BWC;
includes stature, strength, body depth, rump width, and
dairy form), udder composite (UDC; includes fore udder
attachment, udder cleft, rear teat placement, rear udder
height, udder depth, teat length, rear udder width, front
teat placement, and stature), foot and leg composite
(FLC; includes foot angle, rear legs rear view, feet and
legs score, stature, and rear legs side view), daughter
pregnancy rate (DPR; %), calving traits dollars ($),
heifer conception rate (HCR; %), cow conception rate
(CCR; %), cow livability (LIV; %), GL (d), health dol-
lars (HTHS; $), residual feed intake (RFI; pounds), milk
fever (MFEV; %), displaced abomasum (%), ketosis
(%), clinical mastitis (%), metritis (%), retained placenta
(%), early first calving (EFC, d), and heifer livability
(%). Detailed information about each trait is available
from CDCB (2025).

Prediction of Response to Selection

The initial construction of the Lifetime Net Merit
(NMS$) index is described in VanRaden et al. (2004), and
its periodic revisions have been documented in detail
(VanRaden, 2000, 2017; VanRaden and Seykora, 2003;
VanRaden and Multi-State Project S-1008, 2006; Cole et
al., 2010; VanRaden and Cole, 2014; VanRaden et al.,
2018, 2021, 2025). The portfolio of 24 traits and type
composites included in NMS$,,,s, which makes up the
selection objective (the traits being improved), was fixed
for all indices. In the case of health traits (Parker Gaddis
et al., 2020), both the HTH$ subindex and the 6 traits
that make up the index are included in this list. Residual
feed intake and GL are also included in the list of traits
because they are included in the portfolio of Coucil on
Dairy Cattle Breeding evaluations. Selection criteria (the
traits included in the index) varied, ranging from only
milk and fat yield for PDS$ to the 24 traits and type com-
posites included in NM$,5s.

Selection Index Responses. Correlated responses to
selection were calculated using an extension of the well-
known breeder’s equation (e.g., Cameron, 1997):

b'G
)
Vb’P'b
where CR is a vector of correlated responses to selection

of the traits in the selection objective in response to se-
lection on the selection criterion, i is the expected annual

CR=1ix

(1]
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selection differential for NM$,,5 (0.35; VanRaden et al.,
2025), b is a vector of index weights (inflation-adjusted
dollar values per unit of PTA) for the traits in the selec-
tion criterion, P* is a weighted phenotypic (co)variance
matrix for the traits in the selection criterion weighted
to account for differences in information available for
each trait (discussed below), and G is a matrix of genetic
(co)variances among the traits in the criterion and the
objective. Responses in CR were divided by 2.2 yr, the
average generation interval for Holstein bulls born in
2017 (Guinan et al., 2023), to convert from changes per
generation to changes per year. This equation shows that
the correlated response is a function of the genetic and
phenotypic correlations among the traits in the objective
and the criterion and the index weights. Phenotypic and
genetic SD for each trait are shown in Table 2.

In the case of the PD$ index, for example, the matrices
b and P contain the following values:

0.423
8.52

10,163,387.59 233,426.72
233,426.72 13,992.05

- ) )

and the weighted phenotypic (co)variance matrix, P*,
contains the following values:

6,485,324.99 148,748.31
148,748.31 8,904.12

%*

The matrix G, which contains the (co)variances of the
traits in the selection criterion with the traits in the selec-
tion objective, is of dimension 2 x 24 and has the follow-
ing values:

442.54
16.42

2,032,677.52 30,092.81 44,023.81
30,092.81  2,798.41 1,156.14

In this example, the rows of G represent milk and fat, re-
spectively, whereas the columns are the (co)variances of
milk, fat, protein, and heifer livability with milk and fat
(intervening columns [traits] were omitted for legibility).
The resulting genetic (co)variance matrix is available in
Supplemental Table 1 (see Notes).

Solving Equation [1] for the correlated response to se-
lection gives a 1 x 24 matrix, CR, which is the response
to selection for each trait in the selection objective:

CR =|104.666 3.429 2.670 0.031|.

There are 17 traits and type composites included in
NMS$,,5; however, correlated responses to selection
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Table 2. Genetic' and phenotypic SD of traits included in USDA
selection indices; note that genetic SD are on a breeding value basis.>**

SD
Trait name Genetic Phenotypic
Milk yield (Ib) 1,425.72 3,192.57
Fat yield (Ib) 52.90 118.29
Protein yield (Ib) 36.98 82.69
Productive life (mo) 4.40 15.91
Somatic cell score (log,) 0.40 1.15
BW composite 2.12 3.35
Udder composite 1.68 3.23
Feet and legs composite 1.82 4.69
Daughter pregnancy rate (%) 4.72 23.10
Calving ability ($) 35.28 105.83
Heifer conception rate (%) 4.70 47.60
Cow conception rate (%) 5.64 39.31
Cow livability (%) 4.44 38.94
Gestation length (d) 2.86 8.62
Health ($) 22.00 170.00
Residual feed intake (1b) 438.00 1,117.15
Milk fever (%) 0.40 5.16
Displaced abomasum (%) 1.00 9.53
Ketosis (%) 1.00 9.13
Mastitis (%) 3.40 19.31
Metritis (%) 1.60 13.52
Retained placenta (%) 0.80 8.00
Early first calving (d) 5.50 33.47
Heifer livability (%) 1.60 19.12

'"The genetic SD are the SD of true transmitting abilities for each trait
multiplied by 2 to place them on a breeding value basis.

2Milk, fat, and protein are expressed in pounds in the service documenta-
tion published by CDCB and USDA-AGIL, but values in this table have
been converted to kilograms.

3Gestation length is not included in the selection index but is included
here because there are official genetic evaluations for the trait and the
correlated response to selection was included in this study.

“The 6 individual health traits are included in the selection index as part
of the health dollars (HTH$) subindex, not individually, but they are
included here because there are official genetic evaluations for each trait,
and their correlated responses to selection were included in this study.

were calculated for 24 traits: 17 from NMS$,y,s, the 6
individual traits included in the HTHS subindex, and GL.
Economic values for the traits in each index were ad-
justed to 2017 dollars using conversion factors provided
by Sahr (2018). The entries in each vector of economic
values were divided by the 20178 CF factor in column
Z of Sahr (2018) for the year in which each index was
originally published. For example, the vector used for

NMS$, 994 Was:
b

=(0.011 1.049 1.365 11.670 —29.130|.

1994

The adjustment factor of 0.605 needed to convert from
1995 dollars to 2017 dollars is found in row 254, column
Z of Sahr (2018), and the resulting values are:

b =(0.015 1.734 2.256 19.289 —48.148|.

1994—2017
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Values were adjusted to 2017 dollars, because that was
the most recent year for which conversion factors were
available.

Phenotypic and Genetic (Co)variance Matrices. The
genetic and phenotypic correlations used in this study
were those computed for the NM$,y,5 (VanRaden et al.,
2025; https://web.archive.org/web/20250404053357/
https://www.ars.usda.gov/arsuserfiles/80420530/
publications/arr/NMcorrelations2025.txt). Genetic cor-
relations among all 24 traits and type composites were
estimated from correlations among PTA of Holstein bulls
with high REL for productive life (REL > 0.85) because
REML estimates were not available between all traits.
Ideally, a multiple-trait model would be used to estimate
all correlations simultaneously, but in practice conver-
gence of such models can be achieved only for subsets of
traits. Phenotypic correlations were similarly estimated
using yield deviations for cows with records included
in the August 2024 US genomic evaluations calculated
by the Council on Dairy Cattle Breeding (Bowie, MD).
The correlation matrices along with the SD of true trans-
mitting abilities (TTA) and heritabilities are available
from the Animal Genomics and Improvement Labora-
tory (Beltsville, MD; https://web.archive.org/web/
20250404053357/https://www.ars.usda.gov/arsuserfiles/
80420530/publications/arr/NMcorrelations2025.txt).

Genetic SD (Table 3) were approximated by multiply-
ing the TTA by 2 to convert from a transmitting ability to
a breeding value basis. Phenotypic SD for each trait were
then computed by dividing the trait’s genetic SD by the
square root of the trait heritability (e.g., Falconer, 1989):

SD

genetic

D 2XxSDppa
phenotypic — h - h

9

where SDphenotypic and SDgeneric are the respective pheno-
typic and genetic SD, SDypy is the SD of the TTA, and h
is the square root of the heritability.

The genetic and phenotypic (co)variance matrices
were constructed from their respective correlation matri-
ces and SD as:

S =d'Rd,

where S is the genetic (phenotypic) (co)variance matrix,
d is a diagonal matrix of genetic (phenotypic) standard
deviations, and R is a matrix of genetic (phenotypic) cor-
relations. The elements of d were calculated as described
above and R were provided by the USDA Animal Ge-
nomics and Improvement Laboratory.

Phenotypic (Co)variance Weights. The elements of the
phenotypic (co)variance matrix, P, were then weighted
by the average reliabilities of genomic PTA for Holstein
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cows born in 2023 by taking the Hadamard (elementwise)
product of P with the matrix of reliabilities as follows:

Rel' (1) Rel (1) - Rel (n)

11 B

w7 P Rel (1) x Rel (1) Rel (n)

where P* is the phenotypic (co)variance matrix where
each element is adjusted to account for the information
available for each trait, P, are variances and (co)vari-
ances from P, and Rel(t) is the average reliability of the
PTA of trait ¢ for Holstein cows born in 2023. This group
of cows was selected to match the population used for
computing expected genetic progress in VanRaden et al.
(2025). The resulting phenotypic (co)variance matrix is
available in Supplemental Table 2 (see Notes).

Index Heritability. The heritability of each index, h?,
was calculated after Lin and Allaire (1977) as:

L2 _ DGb
b'P'D

I

where b is a 1 x ¢ vector of index weights for the ¢ traits
in the selection criterion, Pc* is a ¢t x t phenotypic (co)
variance matrix for the ¢ traits in the selection criterion
accounting for differing average reliabilities among
traits, and G, is a ¢ x ¢t matrix of genetic (co)variances
among the traits in the selection criterion. Only the traits
included in the selection objective were used in this cal-
culation.

Expected Genetic Progress. Alternative estimates
of genetic gain were computed following the approach
described in the 2025 Lifetime Net Merit documenta-
tion (VanRaden et al., 2025). Expected genetic progress
for each trait was calculated using its correlation with
NMS$,4,5, SD of individual PTA, and the expected annual
trend in SD of NMS$ (0.35) as:

ER, = 1o, (t, NMS$,, )x SD,., (t)x 035, [2]

where ER; is the expected response of trait ¢ to selec-
tion for NMS$,p,s, rpra (t, NM$,4,5) is the correlation
of genomic PTA for trait ¢+ with PTA for NM$,,,s for
Holstein females born in 2023, SDprs (t) is the SD of
PTA for trait ¢, and 0.35 is the expected annual trend in
SD of NM8$,y,5. This approach was applied to each of
the indices included in this study. Similar to VanRaden
et al. (2025), input data were PTA for genotyped US
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Holstein cows born in 2023 from the April 2025 genetic
evaluations.

Trends in Predicted Transmitting Abilities
and Reliabilities

Results from the April 2025 US national genomic eval-
uations were used to compute PTA and REL for each of
the 12 selection indices studied. Individual PTA for each
bull were read from the Format 38 (“All domestic and
foreign bulls with official evaluations”; ftp://ftp.uscdcb
.com/pub/bulls/38alloff.zip) and Format CT (“Calving
traits evaluations”; ftp://ftp.uscdcb.com/pub/bulls/CT
.itb.zip) files distributed by the Council on Dairy Cattle
Breeding (Bowie, MD). Standardized transmitting abili-
ties and REL for type (conformation) traits were obtained
from Holstein Association USA (Brattleboro, VT).

Reliabilities of the various indices were calculated as
the variance of the predicted index values divided by the
variance of the true index values:

Rel (index) = r'Gr ,

v'Gv

where r contains the relative economic values (Table
1) multiplied by the square root of REL for each PTA
trait (ranges from 2 x 1 for PD$ to 17 x 1 for NM$,5s),
G contains the genetic correlations among the traits
(ranges from 2 x 2 for PD$ to 17 x 17 for NM$,4,5),
and v contains the relative economic values for the
traits (ranges from 2 x 1 for PD$ to 17 x 1 for NM$,(55)
(VanRaden et al., 2025). Relative economic values were
calculated as:

~ _bod

V=—"7T"""71
Zt|bt><dt|

where b is a vector of economic values defined above, d
is a vector of SD of true transmitting abilities of the traits
in the index, and ’bt X dt| is the absolute value of the eco-

nomic value of trait  multiplied by the SD of the TTA of
trait ¢.

Reliability of RFI

The PTA and reliability of RFI were obtained by back-
solving from PTA and reliabilities for BWC and feed
saved (FSAV) as:

PTA (RFI) = —PTA (FSAV) —151.8x PTA (BWC),
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REL (FSAV) —0.367 x REL (BWC)
REL (RFI) - e .

Holstein Association USA was responsible for the cal-
culation and distribution of BWC (Holstein Association
USA, 2023). VanRaden et al. (2021) described in detail
how FSAV is computed from BWC and RFI.

Visualizing Differences Among Indices

Rates of gain for each of the 24 traits and type com-
posites were plotted for each of the selection indices.
Distributions of reliabilities for each of the 12 selection
indices were also computed and plotted. Spearman’s
(rank) correlations were calculated among PTA and REL
of each index in 10-yr birth cohorts (<1950, 1960—-1969,
1970-1979, 1980-1989, 1990-1999, 2000-2009, and
>2010). Animals were also grouped into quartiles across
all birth year cohorts based on their April 2025 ranking
for NM$,,s. Heatmaps of the correlation matrices were
visualized to identify patterns among changes in correla-
tions as indices changed over time.

Economic Value of Selection Responses

The economic value of the selection response for a
trait was calculated as the product of either the correlated
response to selection or expected selection response for
that trait and the value per PTA unit used in the NM$,,s
calculation. Values for each trait were divided by the
total value of the respective index to convert them to a
percentage basis, allowing for easier comparisons across
indices.

Availability of Software and Data

The IPython notebooks used for the calculations de-
scribed above are available on GitHub at https://github
.com/wintermind/toomanytraits under a Creative Com-
mons CCO 1.0 Universal license. Code used for data
preparation is included in the notebook “Cole Selection
Index Data Preparation.ipynb.” The SD, heritabilities,
and correlations used in these calculations are included
in the notebook “Cole Selection Index Correlated Re-
sponses NM25.ipynb,” as are individual selection index
calculations and visualizations of correlated responses
to selection. Reliabilities and correlation matrices were
visualized using code in the notebook “Cole Selection
Index Graphics.ipynb.” Expected genetic progress calcu-
lations are documented in the notebook “Cole Expected
Genetic Progress NM25.ipynb.”


ftp://ftp.uscdcb.com/pub/bulls/38alloff.zip
ftp://ftp.uscdcb.com/pub/bulls/38alloff.zip
ftp://ftp.uscdcb.com/pub/bulls/CT.itb.zip
ftp://ftp.uscdcb.com/pub/bulls/CT.itb.zip
https://github.com/wintermind/toomanytraits
https://github.com/wintermind/toomanytraits
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The data used in the calculations are not stored on
GitHub and must be obtained from the original data pro-
viders. The PTA for production, health, fitness, and calv-
ing traits used in this study may be downloaded from the
Council on Dairy Cattle Breeding (ftp://ftp.uscdcb.com/
). Genetic evaluations for conformation (type) traits
may be requested from Jason Graham, Genetic Evalua-
tion and Research Scientist, Holstein Association USA
(jgraham@holstein.com).

Calculations were performed using Python 3.11.7 (Van
Rossum and Drake, 2009), NumPy 1.26.4 (Oliphant,
2006), Pandas 2.2.2 (McKinney, 2010), and JupyterLab
4.0.11 (Huebner, 2018), running on macOS 14.6.1. Fig-
ures were prepared using Seaborn version 0.13.2 (Was-
kom, 2021).

RESULTS

Changes in the Heritability of the Index

The heritability of each of the 12 indices studied
are presented in Table 1 and range from 0.188 in 2010
(NMS$,5,0) to 0.290 in 1984 (CYS). Heritabilities were
highest for those with heavy emphasis on yield traits,
which have heritabilities of 0.20 in this population, and
lowest for indices with greater emphasis on health and
fitness traits, such as DPR (h* = 0.04), CCR (h* = 0.01),
and HCR (h?=0.02). The heritability of NM$,,5 is 0.243,
which is lower than the yield-based indices but higher
than all other versions of the lifetime net merit index.
The average difference between the 2 groups of indices
is 0.069, smaller than might be expected given the low
heritabilities of many of the traits added to the indices in
the last 20 yr and reflects the genetic and phenotypic cor-
relations among traits. Heritabilities would also be lower
if an unweighted phenotypic (co)variance matrix was
used. Importantly, this shows the addition of new traits
to the index has not notably affected the heritability of
the overall selection goal, which is total economic merit.

This makes sense because the goal of the index is to
predict an animal’s genetic merit for lifetime profitabil-
ity, which is not measured directly. Profitability depends
on economic conditions that are not static, and changes
over time are not guaranteed to be consistent in direc-
tion; for example, the futures price for milkfat can be
higher in one 5-yr period than another. The heritability
of the predictor will also change as traits with differing
heritabilities and genetic and phenotypic correlations are
added to—or removed from—the index. Although it has
long been accepted as a useful concept, perhaps lifetime
profitability can only be computed retrospectively and
attempts to predict it will be unsatisfying. If this is true,
then small changes in the properties of the index over
time are to be expected.
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Changes in Correlated Rates of Gain

The correlated responses to selection and expected
genetic progress of all 24 traits from selection on each
of the 12 selection indices studied are shown in Table
4 and Figure 1, and Table 5 and Figure 2, respectively.
Trends were favorable for most traits (e.g., production
traits, PL), although for some traits (e.g., SCS, MFEV)
trends are minimal. It should also be noted that although
the rates of gain for milk, fat, and protein have decreased
over time, they remain favorable, reflecting the economic
importance of these traits; the trend has stayed positive,
although the overall rate of increase has slowed. Reduced
rates of gain for some traits are expected as others are
added to the index, but some phenotypes exhibit in-
creased rates of gain as new traits are added. The average
PTA for the type composites—BWC, UDC, and FLC—
are decreasing slightly, which is due to selection for more
moderate body size, but these traits likely have interme-
diate optima, so a small change in sign is not cause for
alarm. The expected genetic responses shown in Table
5 differ from those presented in VanRaden et al. (2025)
because the same estimation procedure was used, but the
PTA for the animals included have been updated since
December 2024. It is also possible that some animals
that were not genotyped in December 2024 have since
received genotypes and entered the dataset.

Several traits that have not been included in the selec-
tion index until recently, such as LIV and HTHS, show
desirable long-term trends, probably due to their favor-
able correlations with PL, which has been included in the
selection criterion since 1994 when NM$ was introduced
by USDA’s Animal Improvement Programs Laboratory
(VanRaden and Wiggans, 1995). The fertility traits DPR,
HCR, and CCR show similar relationships, but the trend
for EFC has remained constant over time. This is ex-
pected because EFC has much lower genetic correlations
with DPR and CCR, and the phenotype is more closely
associated with rate of growth than ability to conceive
when bred. Traits with greater economic values and
higher heritabilities will typically contribute more to the
economic objective than traits with low heritabilities and
low economic values. A trait that has strong, desirable
correlations with others in the index may also produce
larger changes than those expected from only its heri-
tability or economic value. Should larger-than-expected
gains persist for some traits, the selection index can be
restricted to keep changes within desirable limits (e.g.,
Mancin et al., 2022).

Although the general trends estimated by the 2 meth-
ods (Equations 1 and 2) are generally similar, the rates of
genetic change differ substantially in some cases. These
differences are relatively modest when expressed as SD
of PTA (Supplemental Table 3, see Notes; “Difference


ftp://ftp.uscdcb.com/
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in Response” worksheet). For example, the 27.79-pound
difference in NMS$,p,5s Milk between the 2 methods is
equivalent to only about 5% (0.049) SD. The smallest
difference in NMS$,4,5 responses, representing the clos-
est concordance of the methods, was 0.003 for RETP,
whereas the largest was 0.185 for fat. This is not said
to minimize the importance of estimation—Iarger-than-
expected differences between predictions and observed
performance undermine confidence in selection tools—
but it is not clear which estimate is the “best” in the sense
of producing the smallest difference when compared with
actual lifetime production.

Changes Among Individual Bull Rankings

Heatmaps of the rank correlations among bull PTA
for each selection index are shown in Figure 3. There is
little reranking for the youngest cohorts of bulls (born
2010-2019 and 2020-2025). The highest degree of re-
ranking was consistently seen for NM$,y0s and NM$,,,
which had less emphasis on protein production and more
emphasis on fertility and longevity than other indices.
Over time, there is also less reranking because younger
cohorts are the product of selection for earlier versions
of the index, which included emphasis on fertility and
longevity that older birth year groups were not exposed
to. Although these young animals also show higher re-
ranking for NM$,40s and NM$,;, than the other indices,
the degree of reranking is much lower than for earlier
cohorts of bulls. As Lush (1945, p. 145) noted, “the ani-
mal is the smallest unit that can be selected or rejected at
any one time,” and these bulls might be viewed as proof
that selection works.

There are clear differences between index PTA for
bulls in the top quartile and the bottom quartile (Figure
4), with bulls in the top quartile changing rank more of-
ten than bulls in the bottom quartile. This suggests that
there are many ways that a bull can achieve a desirable
ranking on the index as the traits in the selection criterion
change—through high components or outstanding daugh-
ter fertility, for example—but poor-performing bulls rank
low regardless of the index. This provides breeders with
many choices to suit their own circumstances and meet
their breeding objectives.

Changes in Reliability of the Index

Distributions of traditional and genomic bull reli-
abilities for each of the 12 selection indices are shown
in Figure 5. Very general patterns can be seen in these
plots, such as cohorts of young bulls with relatively low
reliabilities on the left side of each plot, with separation
into groups with higher reliabilities representing differ-
ent cohorts of bulls with daughter records. There is a

Journal of Dairy Science Vol. TBC No. TBC, TBC

“flattening” of the distributions beginning with NM$,s,
which corresponds to generally lower weights on produc-
tion and increased weights on traits with lower heritabil-
ity, such as DPR and PL. As expected (e.g., Schaeffer,
2006; Dekkers et al., 2021), genomic reliabilities were
consistently higher than traditional values. These results
are consistent with predictions of Pszczola et al. (2012),
as virtually all reference animals have actual or imputed
genotypes, and the index has a moderate heritability.

Heatmaps of the rank correlations among reliabilities
of genomic PTA for each selection index are shown in
Figure 6. There are no notable differences when all ani-
mals are visualized together (“All Birthyears” subplot),
meaning that there is little reranking, but there is rerank-
ing among bulls born in the 1950s, 1960s, and 1970s.
The correlations among reliabilities of different indices
for these animals are difficult to interpret, but their reli-
abilities for traits other than milk, fat, and protein are
relatively low because they will have no or very few
daughters phenotyped for traits other than production.
This leads to reranking when the index changes, particu-
larly as weight is placed on traits with low reliabilities.
Correlations are generally high among indices with
similar composition, and low with dissimilar indices for
which bulls have few daughters with records. There are
few differences among bulls born in the 1980s or later.
Animals in the top and bottom quartiles of PTA for each
index showed little reranking (data not shown).

Correlations Among Indices

Rank correlations are high across indices, ranging
from 0.875 to 0.999, suggesting that sires rank similarly
despite the increasing complexity of the index over time
(Supplemental Table 4, see Notes). This implies that
more complex indices do not, in general, lead to notably
different selection decisions (e.g., Legarra et al., 2007).
For example, the correlation of NMS$, 994 with the other
versions of NMS$ ranges from 0.973 with NM$,,0, to
0.993 with NMS$,,. It is possible that genetic progress
in the population is more affected by variation in the ac-
curacy of genetic parameters, difficulties in estimating
economic value estimates, and low reliabilities for new
traits of economic significance than by the index used to
rank bulls for selection. An unintended consequence of
changes in the index producing relatively small changes
in animal rankings is that modern management practices
in the United States that seek to minimize labor costs
rather than maximize rates of genetic gain have only
small effects on realized selection gains. Although the
theory is clear that all traits affecting an animal’s lifetime
economic performance should be included in the index,
the marginal value of adding new traits may be relatively
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Figure 4. Correlations among USDA selection index values for all Holstein bulls with evaluations i in the April 2025 Format 38 (“All domestic

and foreign bulls with official evaluations™) that fall in the bottom and top quartiles of the population.'

"Index abbreviations are: PD$ = predicted

difference dollars, MFP$ = milk-fat-protein dollars, CY$ = cheese yield dollars, NM$ 994 = 1994 Lifetime Net Merit, NM$,49o = 2000 Lifetime Net

Merit, NM$,09; = 2003 Lifetime Net Merit, NM$,9¢ =

2006 Lifetime Net Merit, NM$,,,o =

2010 Lifetime Net Merit, NM$,y,, = 2014 Lifetime Net

Merit, NM$,,,; = 2017 Lifetime Net Merit, NM$,,,5 = 2018 Lifetime Net Merit, NM$,y,; = 2021 Lifetime Net Merit, and NM$,,,5 = 2025 Lifetime

Net Merit.

small once production, longevity, and efficiency are in-
cluded in the index.

Economic Value of Selection Responses

Economic values, expressed as the percent of total
response for an index accounted for by a trait, are
shown in in Tables 6 and 7 for correlated responses to
selection and expected selection response, respectively
(economic values in dollars may be found in Supple-
mental Tables 2 and 3). Although there are small dif-
ferences among the correlated responses and expected
responses, fat, protein, PL, BWC, and LIV consistently
have the highest values across indices and calculation
methods. Residual feed intake shows considerable val-
ue in NM$,q,; and NMS$,,s. Calving ability and HTH$
are less consistent, showing greater value for correlated
selection response than expected selection response.
It is encouraging to consistency among the prediction
methods because the same traits should have similar
economic values regardless of how selection responses
are calculated. It should be noted that assuming linearity
of economic values also assumes that the relationship
between traits remains constant (e.g., that the value of
fat relative to protein is the same over time). Although
this is not strictly correct, selection indices are gener-
ally robust to modest errors in economic values (e.g.,
Cole and VanRaden, 2017).
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DISCUSSION

Changes in (Co)variances over Time

The assumption that the same genetic and phenotypic
(co)variance matrices can be used over a 5-yr period is
not consistent with theory or practice, but it was nec-
essary. Except for a handful of phenotypes—milk, fat,
and protein yields—the data needed to estimate all (co)
variances for 24 traits and type composites at, e.g., 10-yr
intervals simply do not exist. The genetic correlation of
productive life with protein yield decreased from 0.47
to 0.12 between 1993 and 2004 (VanRaden and Tooker,
2005). Tsuruta et al. (2004) also reported that genetic
correlations of PL with milk, fat, and protein yields
and body size composite decreased between 1979 and
1993, approaching 0 in some cases and changing signs
to slightly negative in others. Cole and VanRaden (2018)
showed that selection indices are insensitive to some
changes in parameters, but it is not known how sensitive
indices are to widespread errors in (co)variances. It is
important to periodically recalculate the correlation and
(co)variance matrices in the population under selection.

Differences Among Predictors

Although the trends shown in Figures 1 and 2 are
broadly similar, they are hardly identical. These dif-
ferences likely stem from 2 different sources: (1) the
use of different estimation procedures, and (2) the use
of different populations. In the selection index method
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Figure 5. Distributions of traditional and genomic reliabilities of USDA selection index values for all Holstein bulls with evaluations in the April
2025 genetic evaluation run. Blue lines include genomic information and were computed from the 38alloff.zip file (“All domestic and foreign bulls
with official evaluations”), and orange lines represent traditional evaluations and were computed from the 38all.trad.zip file (“Unofficial traditional
only [no genomics] evaluations”). PD$ = predicted difference dollars, MFP$ = milk-fat-protein dollars, CY$ = cheese yield dollars, NMS$ 99, = 1994
Lifetime Net Merit, NM$,(0, = 2000 Lifetime Net Merit, NM$,40s = 2006 Lifetime Net Merit, NM$,,,, = 2010 Lifetime Net Merit, NM$,,,4 = 2014
Lifetime Net Merit, NM$,,,; = 2017 Lifetime Net Merit, NM$,,,;5 = 2018 Lifetime Net Merit, NM$,4,; = 2021 Lifetime Net Merit, and NM$,4,5 =
2025 Lifetime Net Merit. These files are available by public FTP from the Council on Dairy Cattle breeding: ftp://ftp.uscdcb.com/pub/bulls/.

used to calculate the correlated responses to selection,
genetic trends are estimated from population param-
eters, including the genetic (co)variances in G and the
weighted phenotypic (co)variances in P*. The values
in P were based on records of Holstein cows, the reli-
abilities used to compute P* were those of genotyped
Holstein heifers born in 2023, and the values in G were
based on PTA correlations for Holstein bulls with reli-
abilities of at least 0.85. In contrast, expected genetic
progress was based on PTA of genotyped Holstein heif-
ers born in 2023. In the latter case, the economic values
in b were applied to PTA that are regressed toward the
population average, rather than to individual records or
averages of progeny performance as is the case in selec-
tion index (e.g., Schneeberger et al., 1992). This could
explain, in part, why predictions from the 2 methods
differ. It has already been noted that the parameters
used in the selection index calculations were estimated
using slightly different populations, but it is not always
clear which population should be used. For example,
dairy bulls are the principal drivers of genetic gains in
the commercial cow population, but the young Holstein
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heifers used to calculate expected selection responses
represent the current generation of cows, whereas their
sires may represent the previous generation. A more
sophisticated method is probably needed to properly
account for the different sources of information avail-
able. For example, separate P and G matrices could be
constructed for each path of selection, and the estimates
for each path combined to produce a weighted average
response. This is similar in some respects to the method
implemented by Rutten et al. (2002) to predict selection
response for overlapping generations in the SelAction
software package.

Efficiency of Selection for Multiple Traits

Hazel and Lush (1942) showed that, when selection is
for ¢ traits using an index (“total score,” in their lan-
guage), progress for any one trait is 1/ \/2 times as great
as single-trait selection alone (Figure 2 in Hazel and
Lush, 1942). This appears to support the intuition of
many people that an index should not include too many
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traits because the selection pressure applied gets “dilut-
ed,” and there is ultimately little improvement in any of
them. However, in that derivation all traits were assumed
to have the same economic weight, heritability, and phe-
notypic variance, which is never true. Results were also
based on the use of mass selection, rather than within-
family selection. Traits were assumed to be uncorrelated,
which is untrue (e.g., Oliveira Junior et al., 2021, and
many others), and it is challenging to estimate correla-
tions among the growing number of traits included in
selection indices. There is no simple, closed-form ex-
pression for computing the relative efficiency of arbitrary
indices in which the traits have different properties, but
Young (1961) did show that the superiority of the index
increases as the number of traits increases. Zhang and
Amer (2021) also noted that traits with high economic
values may be over-weighted if their heritabilities are
low, limiting the amount of selection emphasis which can
be placed on them. It is difficult to make more general
statements because the relative efficiency of an index is
influenced by the phenotypic and genetic correlations
among the traits in the index, the economic value of each
trait, and the signs and magnitudes of the correlations,
which affect the index in complex ways.

A more important point, which often is lost when trans-
lating index selection from the genetic evaluation center
to the field, is that the goal of the index is to increase
the population value of an aggregate genotype. This
means that the rate of selection response for individual
traits is the wrong thing on which to focus. In fact, when
Smith formally presented the idea of discriminant func-
tions for plant selection, the genetic value of a line was
clearly rooted in the idea of improving the overall value
of plants, not individual characteristics of those plants
(Smith, 1936, p. 240). Hazel and Lush (1943, p. 393)
expressed this to animal breeders as the concept of “rela-
tive economic value,” and they convincingly showed that
the total score method (index selection) is more efficient
than other methods of selection studied. In a later paper,
Hazel (1943) emphasized the importance of economic
values by listing them first among the parameters needed
to construct an index. The challenge is that there is a
long time between when a breeding decision is made and
when its consequences are seen in the barn, and people
tend to focus on what they can easily see, such as a cow’s
protein yield, rather than aggregate properties that are
not easy to see, such as the profitability of an individual
animal. Martin-Collado et al. (2018) noted that farmers
are more likely to adopt heuristics for decision making
when animal breeding decisions are complex, and that
ineffective heuristics are associated with poor selection
decisions and a loss of genetic progress. Those findings
are consistent with anecdotal reports from the field that
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indices are often not being used in a manner consistent
with their intended function.

A complicating factor is the practice in the field of
imposing additional thresholds (minimum culling levels)
when selecting mating sires using an index. This is often
done to prevent the loss of progress in a trait that is dif-
ficult to improve or to ensure strong performance in a
trait that is closely tied to farm income. An example is
the value of SCC to organic farmers that are more heavily
penalized for using antibiotics to treat mastitis. However,
if the index is properly constructed and the economic
values are correct for a farm’s market, then there is no
need to make ad hoc modifications to the index. It has
also been suggested that economic values should be ad-
justed to reflect the reliabilities of the traits to which they
are applied to provide accurate predictions of genetic
response (Togashi et al., 2018). Due consideration is
also often not paid to genetic trend or base changes when
imposing such criteria. For example, a bull born in 2020
with a PTA of —1 for DPR has better fertility than a bull
with a PTA of +1 born in 2010. Simianer et al. (2023)
recently studied several aspects of realized genetic re-
sponse to index selection and noted that this behavior can
produce “realized economic weights,” which differ sub-
stantially from the weights used to construct the index.
In an example based on a German Holstein index, RZG,
introduced in 2021, Simianer et al. (2023) found that the
realized weights applied to each trait were substantially
different than the weights used to construct the index
because of the thresholds applied to individual traits by
farmers, and in one case there was even a change in sign.

Number of Traits Included in the Index

The number of traits included in a typical selection
index has grown over time, from a few yield traits, to
include many additional phenotypes, such as fertility,
health, and fitness traits. This allows farmers to make use
of more information than in the past and takes advantage
of relationships among traits, which rarely have correla-
tions of zero. Many traits may also have direct economic
value; for example, milk processors often pay premiums
for low SCS in addition to payments for high protein
and fat content. Traits also can have indirect value; for
example, SCS can predict losses from IMI if clinical
mastitis is not recorded directly. Substantial losses can
occur when indirect values are ignored; for example, the
well-documented negative correlation of fertility with
milk yield (Lucy, 2001). Balanced selection improves
traits according to their economic values, and selection
indices should be periodically revised to include new
traits and reflect changing economic conditions, as well
as to update genetic parameters between and among
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traits. However, as traits are added to an index it becomes
increasingly difficult to predict a priori if the new index
will have greater or reduced response compared with an
index with fewer traits (Sivanadian and Smith, 1997).
Selection indices are generally robust to changes in eco-
nomic values as long as they have the correct sign (e.g.,
Vandepitte and Hazel, 1977; Legarra et al., 2007; Cole
and VanRaden, 2018).

The title of this paper poses a question: “Are there
too many traits in our selection indices?” It has been ad-
dressed in the literature in only very general terms. For
example, Lush (1945, p. 161) felt very strongly about
the matter, writing, “The fact that several things must be
considered lowers the intensity of selection possible for
each of them, but there is no escape from that so long as
all those things have something to do with the net desir-
ability of the animal to the breeder or to his customers.”
In his generally comprehensive survey of selection index
methodology, Van Vleck (1993) avoids the issue entirely,
as does Cameron (1997). The simplest explanation for
this may be that the number of traits included in a selec-
tion index is of no particular scientific interest unless it
leads to interesting problems, such as challenges in es-
timation. It is, however, a question that is important to
users of the selection indices, including dairy producers,
genetics consultants, and sire analysts.

In the absence of a closed-form expression relating
trait properties to index efficiency, indirect measures
were used to study this question. Correlated responses
to selection for 12 different selection indices were calcu-
lated for 24 traits and composites included in US national
genetic evaluations. The initial index, PD$, was intro-
duced in 1971 and had only 2 traits, milk and far yields.
The current NMS$ index, released in 2025, includes 17
traits and composites. Correlated responses to selection
show that the addition over time of new traits to the in-
dex sometimes reduces the rate of gain for other traits,
such as milk production, rates of gain usually remain
favorable. This implies that adding new traits does not
eliminate progress for existing traits. Correlations of
index values for Holstein bulls over time were lowest
for animals born before 2000, when selection focused
primarily on yield, and highest for bulls born after 2000,
reflecting more complex selection goals. This suggests
that selection using total merit indices was successful at
achieving gains for many traits. Reliabilities did change
somewhat as new traits were added to the index, but the
introduction of genomic selection resulted in higher reli-
abilities even though lower-heritability traits were added
to the index. This tells us that the use of more traits did
not affect our ability to correctly evaluate animals. These
results suggest that the continuous growth in the number
of traits included in selection indices has not reduced
realized genetic progress or accuracy of selection.
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CONCLUSIONS

Properly constructed selection indices produce desir-
able rates and directions of gain for many traits at once.
The imposition of minimum culling levels on existing
indices will produce suboptimal rates of gain. Changes in
response to index revisions are generally modest except
in cases where traits of substantial importance that were
not previously included in the selection objective are
added.
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Nonstandard abbreviations used: BSC = body size
composite; BWC = BW composite; CAS$ = calving abil-
ity; CCR = cow conception rate; CT$ = calving trait
dollars; CYS = cheese yield dollars; DPR = daughter
pregnancy rate; DSAB = displaced abomasum; EFC =
early first calving; FLC = foot and leg composite; FSAV
= feed saved; GL = gestation length; HCR = heifer con-
ception rate; HLIV = heifer livability; HTH$ = health
dollars; KETO = ketosis; LIV = cow livability; MAST =
mastitis; METR = metritis; MFEV = milk fever; MFP$
= milk-fat-protein dollars; NM$ = Lifetime Net Merit;
NM$1994 = 1994 NM$, NM$2000 =2000 NM$, NM$2006 =
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2006 NM$; NM$,0;4 = 2014 NMS$; NMS$,,, =2017 NMS$;
NMS$y015 = 2018 NMS$; NM$,0,; = 2021 NMS$; NMS$,,5
= 2025 NMS; PDS$ = predicted difference dollars; PL =
productive life; PTA = predicted transmitting abilities;
REL = reliabilities; REPL = retained placenta; REPL =
retained placenta; RFI = residual feed intake; TTA = true
transmitting abilities; UDC = udder composite.
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