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ABSTRACT

Identifying causal genetic variants underlying eco-
nomically important traits in dairy cattle is essential for
understanding their genetic basis and optimizing breed-
ing programs. The growing availability of sequenced
reference genomes and individuals with both phenotypic
and genotypic data notably enhances our ability to de-
tect genetic associations and further pinpoint causal
effects. This comprehensive GWAS of dairy cattle used
deregressed breeding values as phenotypes and analyzed
11,292,243 quality-controlled, imputed sequence vari-
ants from 50,309 Holstein bulls. The number of bulls
with available phenotypes ranged from 23,121 to 50,309
across 30 complex traits categorized into production
and yield, type, and longevity and health. We performed
GWAS using our SLEMM-GWA approach, which ac-
counts for the varying reliability of deregressed breeding
values across individuals and demonstrates computational
efficiency for large sample sizes and sequence data. This
analysis identified 381 significant association peaks, of
which 126 are novel findings. Subsequent Bayesian fine-
mapping provided statistical prioritization by assigning
posterior conditional inclusion probabilities to individual
variants and genes, yielding a list of credible candidate
genes—an advancement over conventional GWAS re-
porting of all proximal genes. This prioritization offered
direct statistical support for previously reported genes
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and, more importantly, identified credible candidate
genes within the 126 newly discovered peaks for specific
traits, including AOPEP, GC, E2F6, MGSTI1, VPSI3B,
ZNF652, ASPH, SFMBTI, and MAPRE?. These findings
enhance the understanding of the genetic architecture of
these complex dairy traits and provide valuable insights
for the refinement of genomic selection strategies and
breeding programs in Holstein cattle.

Key words: GWAS, fine-mapping, dairy cattle, candidate
genes

INTRODUCTION

The genetic improvement of economically important
traits in livestock represents a cornerstone of modern
animal agriculture, yielding significant implications for
production efficiency, animal welfare, and environmen-
tal sustainability. Over the past century, the spectrum of
traits considered for genetic selection within dairy cattle
populations has been expanded to address the evolving
demands of both industry and society. Selective breed-
ing efforts in recent decades have resulted in significant
advancements in traits such as milk production, body
conformation, reproductive performance, and disease
resistance (Miglior et al., 2017). The integration of ge-
nomic data into breeding programs has greatly improved
the ability to make informed selection decisions, thereby
accelerating genetic gains and improving the efficiency
of breeding strategies (Meuwissen et al., 2001; Van-
Raden, 2008; Garcia-Ruiz et al., 2016).

A comprehensive understanding of the genetic archi-
tecture underlying these traits provides significant ad-
vantages for selective breeding programs (Weller et al.,
2017). The identification of causal genes, such as DGATI
(Grisart et al., 2002; Winter et al., 2002) and 4BCG2
(Cohen-Zinder et al., 2005), has advanced our knowl-
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edge of complex traits and informed targeted breeding
strategies. Within this framework, animal genotyping
using SNP panels or whole-genome sequencing followed
by GWAS has been presented as the gold standard ap-
proach to link phenotypes of interest to their underlying
genetics in livestock species (Korte and Farlow, 2013).
The GWAS have been widely used to identify genetic
variants associated with complex traits, providing deeper
insights into their genetic basis (McCarthy et al., 2008).
Studies conducted in various dairy cattle breeds have
identified numerous loci associated with dairy traits. As
of release 55 (December 23, 2024), the Cattle QTLdb
has compiled 192,336 QTL or associations covering 553
different traits (Hu et al., 2022).

However, GWAS typically identify associations rather
than causal variants, facing limitations in precisely pin-
pointing causal variants due to factors such as linkage
disequilibrium and population structure (Stram, 2004;
Goddard and Hayes, 2009). A conventional GWAS often
yields numerous significant associations, complicating
the prioritization of variants most likely to be causal.
Furthermore, typical GWAS interpretation often relies on
nominating candidate genes based simply on proximity to
association peaks, which limits statistical confidence in
identifying truly causal genes. These challenges impede a
more granular understanding of the genetic mechanisms
underlying the complex traits and hinder the effective
application of these findings in breeding programs. For-
tunately, the increasing availability of high-density SNP
chip genotyping and whole-genome sequencing data
from larger cattle populations has substantially enhanced
both statistical power and genomic coverage. This com-
bination provides a critical opportunity to move beyond
identifying associations toward pinpointing causal vari-
ants through fine-mapping.

Fine-mapping offers a way to prioritize the causal vari-
ants underlying the associations identified by GWAS.
Many fine-mapping methods have been developed, includ-
ing CAVIARBF (Chen et al., 2015), FINEMAP (Benner et
al., 2016), and SuSiE (Zou et al., 2022). However, these
methods are primarily designed for samples of unrelated
individuals, and direct application to populations with ex-
tensive relatedness, common in livestock, can significant-
ly compromise fine-mapping power and precision (Wang
et al., unpublished data, 2025). In dairy cattle, intensive
use of artificial insemination and strong selection prac-
tices have resulted in populations characterized by strong,
long-range linkage disequilibrium and large half-sib fami-
lies (de Roos et al., 2008; Kim and Kirkpatrick, 2009),
requiring different approaches than those typically applied
in human studies. We specifically developed BFMAP for
samples of related individuals (Jiang et al., 2019a). The
BFMAP applies a linear mixed model framework to ac-
count for the relatedness among individuals and polygenic
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effects, thereby improving the accuracy of causal variant
identification in livestock populations.

The US dairy industry has been collecting and evalu-
ating economically important traits in dairy cattle for
over a century, and the traits considered for genetic
selection in dairy cattle populations have evolved to
meet the demands of industry and market (Weigel et al.,
2017; Guinan et al., 2023). This large-scale collection
of phenotypic records and genotype data for a series
of key dairy traits, including production, conformation,
and health (VanRaden, 2016), provides a unique oppor-
tunity to investigate the genetic basis of complex traits
in dairy cattle.

In this study, we use GWAS and Bayesian fine-map-
ping to identify genetic associations and prioritize candi-
date variants and genes for 30 complex traits in Holstein
cattle. By analyzing a large cohort of Holstein bulls (n
= 50,309) with over 11 million quality-controlled, im-
puted sequence variants, the aim was to detect robust
associations and identify causal genetic elements influ-
encing production, conformation, and health traits. These
findings should provide valuable biological insights into
these complex traits, thereby informing genetic improve-
ment strategies and enhancing the efficiency of breeding
programs in the dairy industry.

MATERIALS AND METHODS
Phenotype Data

This study used data for 30 traits with sample sizes
ranging from 23,121 to 50,309 Holstein bulls, accessed
through the Council on Dairy Breeding (CDCB). The
PTA derived from traditional evaluations were der-
egressed following VanRaden et al. (2009) to remove
the contribution of parent information and reduce de-
pendence among animals. This deregression process
generated a deregressed PTA and its corresponding
reliability for each bull, which reflects the amount of
information from its own records and progeny. For sub-
sequent analyses, these deregressed PTA were used as
pseudophenotypes, and their reliabilities were used to
derive error variance weights (VanRaden, 2008; Van-
Raden et al., 2011). The 30 traits were classified into
3 categories: production and yield (PY), longevity and
health (LH), and type (TY), with net merit treated as a
distinct trait. Details on the number of Holstein bulls
and the mean and SD of deregressed PTA reliabilities
for each trait are provided in Table 1.

Genotype Data

Genotypes for the 50,309 Holstein bulls were origi-
nally obtained from various SNP arrays, encompassing
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Table 1. Sample size (N) and reliability statistics (mean and SD) for deregressed PTA across 30 dairy traits in

Holstein bulls

Reliability

Trait name Abbreviation Group' N Mean SD

Milk Yield Milk PY 50,309 0.793 0.186
Fat Yield Fat PY 50,309 0.785 0.191
Protein Yield Protein PY 50,308 0.774 0.189
Fat Percentage Fat Percent PY 50,309 0.785 0.191
Protein Percentage Pro_Percent PY 50,308 0.774 0.189
Final Score Final score TY 40,793 0.652 0.174
Stature Stature TY 40,839 0.841 0.085
Strength Strength TY 40,833 0.718 0.153
Dairy Form Dairy_form TY 40,562 0.714 0.152
Foot Angle Foot angle TY 40,633 0.613 0.229
Rear Legs (Side View) Rear_legs(side) TY 40,837 0.742 0.140
Body Depth Body depth TY 40,837 0.724 0.167
Rump Angle Rump_angle TY 40,837 0.819 0.096
Rump Width Rump_width TY 40,015 0.755 0.117
Fore Udder Attachment Fore_udder_att TY 40,838 0.758 0.126
Rear Udder Height Rear ud height TY 40,839 0.708 0.151
Rear Udder Width Rear ud width TY 40,831 0.616 0.224
Udder Depth Udder depth TY 40,834 0.832 0.088
Udder Cleft Udder_cleft TY 40,799 0.663 0.198
Front Teat Placement Front teat pla TY 40,838 0.753 0.120
Teat Length Teat_length TY 40,824 0.813 0.092
Rear Legs (Rear View) Rear legs(rear) TY 39,855 0.574 0.193
Feet and Legs Feet and legs TY 35,247 0.564 0.242
Rear Teat Placement Rear teat pla TY 39,670 0.770 0.107
Net Merit Net_Merit — 50,309 0.605 0.183
Productive Life Prod_Life LH 49,389 0.624 0.229
Somatic Cell Score SCS LH 50,193 0.714 0.223
Livability Livability LH 49,574 0.359 0.226
Calf Livability Calf Livability LH 23,121 0.126 0.195
Gestation Length Gestleng LH 49,599 0.454 0.416

! Abbreviations for trait groups: PY = production and yield; TY = type; LH = longevity and health.

over 50 different SNP panels validated by the CDCB
(Bowie, MD) for genomic evaluations (ranging from
low-density arrays with a few thousand SNPs to high-
density arrays with over 60,000 SNPs). These genotypes
were then imputed to a common set of 78,965 SNPs to
standardize the genomic data across diverse genotyping
platforms. After position and allele matching, exclusion
of sex chromosomes, and quality control procedures,
~70,000 autosomal SNPs remained and were subse-
quently imputed to the whole-genome sequence level
using IMPUTES (Rubinacci et al., 2020). This imputa-
tion leveraged a reference panel consisting of ~2,800
bulls (including Holsteins and other breeds) from both
Run8 and Run9 (European Nucleotide Archive acces-
sions PRJEB42783 and PRJIEB56689, respectively) of
the 1000 Bull Genomes Project (Hayes and Dactwyler,
2019) and 491 dairy bulls (including 318 Holsteins)
from the Cooperative Dairy DNA Repository(CDDR;
Madison, WI). The sequence data from CDDR were
provided to USDA-AGILand made available for this
project with CDDR approval. Variants were retained if
they had a minor allele frequency >0.01, satisfied Har-
dy-Weinberg equilibrium criteria at a P-value threshold
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>1 x 10", and achieved an IMPUTES INFO score >0.8.
Only biallelic SNPs on autosomes were retained, ex-
cluding sex chromosomal and mitochondrial variants.
After quality control, 11,292,243 sequence variants
remained for subsequent analyses, and variant positions
were annotated based on the ARS-UCD1.2 genome as-
sembly (Rosen et al., 2020).

GWAS

A GWAS was performed using the SLEMM-GWA
function in SLEMM v0.89.5 software (Cheng et al.,
2023; available at https://github.com/jiang18/slemm),
which can model the varying reliability of pseudophe-
notypes (e.g., deregressed PTA) across individuals. The
SLEMM-GWA uses the following linear mixed model:

y=Xb+za;+g+ewithg-~ ./\/'(O,Goz)
and e ~ N(O,Rof),

where y represents a vector of (pseudo-)phenotypes, b
denotes a vector of nongenetic fixed effects (including
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the intercept) with corresponding design matrix X, z; is a
vector of genotypes for the j-th variant (coded as 0, 1, or
2) with additive effect a;, g is a random-effect term ac-
counting for relatedness and polygenic effects, and e is a
vector of residuals. Additionally, G is a genomic rela-
tionship matrix (GRM) constructed using the second
method of VanRaden (2008). Also, R is a diagonal matrix
modeling individual reliability, with diagonal elements
set to 1 for directly measured phenotypes and for pseudo-
phenotypes computed as R; =1/ r;? — 1, where ;2 de-
notes the reliability of the i-th individual’s pseudopheno-
type. In this study, we used deregressed PTA as pseudo-
phenotypes and included only the intercept in fixed ef-
fects. For each variant j, a score test chi-squared statistic
was computed to test the null hypothesis that a; = 0.

To optimize SNP selection for constructing the GRM,
we compared GWAS results using GRM derived from
different SNP sources and densities. Specifically, we
evaluated the GRM built using the full ~70,000 autosomal
chip SNPs, alongside GRM constructed from randomly
selected subsets without replacement of 30,000, 50,000,
and 70,000 SNPs drawn from the 11,292,243 quality-con-
trolled imputed sequence variants. Based on a comparison
of genomic inflation factors and the number of significant
associations, the GRM built using 70,000 randomly se-
lected sequence SNPs was chosen for subsequent analyses.

Genome-wide significant associations were initially
declared using a genome-wide significance threshold of P
< 5x 107®. Associated regions were defined around each
significant peak, encompassing the contiguous genomic
segment containing the cluster of significant SNPs. As-
sociation peaks were identified by visual inspection of
the Manhattan plot for each trait. The boundaries of each
associated region spanned from the position of the first
to the last significant SNP within each visually identified
cluster. For comparison with previously reported asso-
ciations, only regions containing at least 3 variants with
P <5 x 107" were retained to reduce potential false posi-
tives. To determine whether these associated regions had
been previously reported, we cross-referenced our results
against the Cattle QTLdb release 55 (Hu et al., 2022) and
extracted traits with definitions closely matching the 30
traits analyzed in our study (Supplemental Table S1, see
Notes; Wang et al., 2025a). Additionally, we compared
our findings with our previous GWAS results from Jiang
et al. (2019a), a study that analyzed 35 traits in 27,214
individuals (27 traits overlapping with this study) and
whose results were not included in the Cattle QTLdb.
Genomic coordinates from our previous study were con-
verted from UMD 3.1 to ARS-UCD 1.2 using liftOver
(Kent et al., 2002), and peaks located on unplaced ge-
nomic scaffolds were excluded from comparison. A peak
was considered consistent with existing findings if its
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associated region intersected with the genomic interval
extending £500 kb from a previously reported associa-
tion for the same trait in either the Cattle QTLdb or our
previous study, whereas those falling outside this interval
were classified as novel discoveries.

To broadly capture candidate regions for fine-mapping,
we further identified associations using an inclusive
significance threshold (P < 5 x 107°). Significant SNPs
were grouped into contiguous clusters to define initial
candidate regions. Adjacent clusters spaced by less than
5 Mb were merged, ensuring subsequent candidate re-
gions were at least 5 Mb apart to avoid redundancy. To
reduce potential false positives, only regions containing
at least 3 variants with P < 5 x 10 * were retained for
further analysis. For each retained region, we established
initial minimal boundaries encompassing all constitu-
ent variants meeting the significance threshold (P < 5
x 107°). Following our previous procedure (Jiang et al.,
2019a), the region boundaries were then adjusted based
on the position of the variant with the minimum P-value
within that region. Specifically, the boundaries were ex-
tended outwards where necessary to ensure a minimum
distance of 1 Mb both upstream and downstream from
this minimum P-value variant’s position. This ensured
each final candidate region spanned at least 2 Mb and
was conceptually centered around the location of the
minimum P-value variant, thereby increasing the likeli-
hood of including potential causal variant(s).

Fine-Mapping

To identify potential causal variants and candidate
genes, each candidate region identified by GWAS was
fine-mapped using the forward selection method in
BFMAP v.0.65 (Jiang et al., 2019a). The BFMAP is
a Bayesian fine-mapping software tool designed for
samples of related individuals, such as livestock, and it
employs a linear mixed model framework incorporating
a GRM to account for polygenic effects or relatedness,
or both. The forward selection procedure in BFMAP
sequentially adds independent signals to the model,
repositions them for refinement, and identifies variants
related to each signal. It computes posterior conditional
inclusion probability (PCIP) for each variant in a sig-
nal, which quantifies the probability of being included
conditional on the other signals in the model. For each
signal, BFMAP generates a credible set of variants, de-
fined as the smallest set whose cumulative PCIP reaches
a specified confidence level. Detailed documentation
and guidelines for BFMAP are available at https://
github.com/jiang18/bfmap. In our study, we set the con-
fidence level to 95%, thereby deriving a 95% credible
set of variants for each signal. To reduce computational
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Table 2. Genomic inflation factor (1) and number of peaks identified
using1 GRM constructed with different SNP sets across 3 representative
traits

Trait Parameter  Seq 30,000 Seq 50,000 Seq 70,000 Chip 70,000

Milk A 0.905 0.821 0.833 0.825
No. of peaks 14 13 12 12

Foot Angle A 1.093 1.006 1.002 0.923
No. of peaks 8 7 8 3

Livability A 0.999 0.952 0.955 0.922
No. of peaks 8 8 9 6

'GRM were constructed using SNPs randomly selected from imputed se-
quence data (Seq) at different densities (30,000, 50,000, 70,000) or using
~70,000 autosomal chip SNPs. Reliability was incorporated in the model.
Number of peaks defined using genome-wide significance threshold of P
<5 x 10" and identified by visualization.

burden for fine-mapping, only variants with a GWAS
P < 0.05 were retained for each candidate region. The
BFMAP was run separately for each candidate region.
We also computed gene-level PCIP by aggregating the
variant-level PCIP for all variants located within a gene,
including its 3 kb upstream and downstream flanks to
capture potential regulatory regions, based on gene lo-
cations extracted from Ensembl release112.

RESULTS
GWAS Optimization

To optimize the GWAS model, we compared results
obtained using GRM constructed from the ~70,000 au-
tosomal chip SNPs and from random subsets of 30,000,
50,000, and 70,000 SNPs from the imputed sequence
data. For this comparison, we selected 3 representative
traits: Milk (from the PY trait group), Livability (from
the LH trait group), and Foot Angle (from the TY trait
group). As illustrated in Supplemental Figure S1, see
Notes (Wang et al., 2025a), GWAS using the GRM from
~70,000 autosomal chip SNPs detected slightly fewer
significant peaks at the P-value threshold of 5 x 107
than GWAS using GRM from randomly selected imputed
sequence SNPs. The number of significant peaks was
similar across GWAS using the 3 GRM constructed from
randomly selected sequence SNPs. We further evaluated
the control of genomic inflation (A) across these differ-
ent GRM constructions. As shown in Table 2, the GRM
from ~70,000 autosomal chip SNPs resulted in deflated A
values for all 3 traits (A < 0.95), whereas the GRM from
30,000 randomly selected sequence SNPs produced an in-
flated A for Foot Angle (A > 1.05). While the difference in
A values between GRM from 50,000 and 70,000 randomly
selected sequence SNPs was minimal, the latter produced
A values marginally closer to the ideal value of 1.0 for
all 3 representative traits. Based on these comparisons,
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we chose to use the 70,000 randomly selected SNPs from
the imputed sequence data to construct the GRM that was
applied consistently across all traits in all subsequent
analyses to ensure methodological consistency.

Additionally, we assessed the effect of incorporating
reliability into our GWAS by comparing 2 models: one
with a reliability-weighted residual term
(R”- =1/r?%- 1), and one with an identity residual
term (R = I). Accounting for reliability allowed us to
down-weight pseudophenotypes with lower accuracy,
potentially reducing statistical noise. Log-likelihood
values in Supplemental Table S2 (see Notes; Wang et
al., 2025a) demonstrate substantially improved model
fitting when incorporating reliability information. For
Milk Yield (Figure 1A vs. 1B), a trait characterized by a
high mean (0.793) and low variation (SD = 0.186) in
reliability, the overall association pattern remained
largely consistent between the 2 models, with slight dif-
ferences in peak prominence. In contrast, for Foot Angle
(Figure 1C vs. 1D), which exhibits an intermediate
mean and higher variation in reliability (mean = 0.613,
SD = 0.229), modeling reliability enhanced the signifi-
cance of association peaks. The effect was most notable
for Livability (Figure 1E vs. 1F), which has a substan-
tially lower mean (0.359) and high variation (SD =
0.226) in reliability. Without modeling reliability, no
signals exceeded the genome-wide significance thresh-
old (5 x 107®); however, the GWAS incorporating reli-
ability identified 9 peaks. Therefore, we incorporated
reliability for all 30 complex traits in subsequent GWAS
analyses to optimize model performance.

GWAS

We conducted GWAS for 30 complex traits in 50,309
Holstein bulls using the optimized model, with sample
sizes for individual traits ranging from 23,121 to 50,309.
These bulls possess extensive daughter records, with
deregressed PTA reliability ranging from 0.126 for Calf
Livability (a typical low-h? trait) to 0.841 for Stature (a
typical high-h? trait; Table 1). Our mixed model GWAS
approach effectively controlled population structure and
familial relatedness, as indicated by genomic control
factors (1) smaller than 1.03 for all the 30 traits (Supple-
mental Table S3, see Notes; Wang et al., 2025a). The
GWAS Manbhattan plots for the 30 traits are provided in
Supplemental Figure S2 (see Notes; Wang et al., 2025a),
showing readily identifiable association peaks. Using
a genome-wide significance threshold of P < 5 x 1075,
381 significant peaks were identified for the 30 complex
traits. Significant peak counts varied by trait, ranging
from 0 for Calf Livability to 28 for Protein Percentage
(Supplemental Table S4, see Notes; Wang et al., 2025a).
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Comparison with existing studies revealed that of
the 381 significant peaks identified in this study, our
analysis newly identified 126 peaks (33%) that have not
been previously reported in the Cattle QTLdb or our
earlier work (Figure2; Jiang et al., 2019a). The remain-
ing 255 peaks (67%) had been previously documented,
with 250 of these specifically reported in Holstein
cattle (Supplemental Table S5, see Notes; Wang et al.,
2025a). No novel peaks were identified for PY traits in
this study. In contrast, we discovered 97 and 21 novel
significant peaks for TY and LH traits, respectively.
The remaining 8 novel peaks were associated with
Net Merit. Furthermore, compared with our previous
study using data from ~27k Holstein bulls (Jiang et al.,
2019a), the increased scale in the present analysis led to
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the discovery of 206 additional peaks, 80 of which had
been previously documented in the Cattle QTLdb. Only
47 peaks from our previous study were not replicated at
the genome-wide significance threshold (P < 5 x 107%)
in the current study, with 11 of these not replicated at
the more lenient threshold (P < 5 x 107%), likely due
to sample changes and methodological differences in
imputation and association procedures.

Fine-Mapping

The fine-mapping process using BFMAP involved
identifying independent signals within each candidate
region, computing PCIP for variants within these sig-
nals, and generating a 95% credible variant set for each
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Figure 2. Comparison of peaks identified using a genome-wide significance threshold (P <5 x 10™) with previously reported associations across
29 traits. Calf Livability was excluded because no associations passed this threshold. Bars represent the total number of significant peaks, subdivided
into 4 categories based on reporting status: (blue) reported in Cattle QTLdb for Holstein (alone or with other breeds); (orange) reported in Cattle
QTLdb for non-Holstein breeds only; (gray) identified in our previous study (Jianget al., 2019) but absent from Cattle QTLdb; and (green) newly

discovered in this study.

independent signal. Applying this process to the 2,113
candidate regions (identified by the inclusive GWAS
significance threshold of P < 5 x 107°) yielded 4,023
independent signals (Supplemental Tables S6-S8, see
Notes; Wang et al., 2025a). We further filtered these
signals using a fine-mapping P-value threshold of <5 x
10°%, resulting in 792 high-confidence signals (Supple-
mental Table S4; Wang et al., 2025a). Among these sig-
nals, 376 SNP-trait pairs exhibited a PCIP >0.5, and 174
pairs had a PCIP >0.9, representing high-confidence
candidate variants.

Candidate Genes

For each of the independent fine-mapped signals
where the signal’s lead variant fine-mapping P-value was
<5 x 107, we computed gene-level PCIP by aggregating
variant PCIP for all variants within each associated gene
(including 3 kb upstream/downstream flanks based on
Ensembl locations) signals (Supplemental Table S9, see
Notes; Wang et al., 2025a). This analysis yielded 2,038
gene-trait pairs with a gene-level PCIP >0.5.

To identify the most promising candidate genes,
stringent filtering criteria were applied: a gene-level
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PCIP of >0.8 and, for the associated signal’s lead vari-
ant, a fine-mapping P-value of <5 x 10°*. This selection
yielded a focused list of 229 unique candidate genes
(Table 3), including several well-studied or repeatedly
reported genes in cattle such as DGATI, ABCG2, GHR,
GPIHBPI1, ZNF623, ZC3H3, PLEC, and HSF1 (Arranz
et al., 1998; Grisart et al., 2002; Cohen-Zinder et al.,
2005; Viitala et al., 2006) for PY traits; ABCC9, CCND2,
ARRDC3, TMTC2, and IGF2 for TY traits (Saatchi et al.,
2014; Weng et al., 2016; Seabury et al., 2017; Ghore-
ishifar et al., 2020; Cai et al., 2023a; Gualdron Duarte
et al., 2023; Schmidtmann et al., 2023); and BTBDY for
LH traits (Cai et al., 2023b). Notably, 9 candidate genes
were identified within the newly discovered peaks for
specific traits: AOPEP (Fore Udder Attachment), GC
(Livability), E2F6 (Livability), MGST! (Net Merit),
VPS13B (Rear Udder Height), ZNF652 (Rump Angle),
ASPH (Rump Width), SFMBTI (Rump Width), and MA4-
PRE?2 (Teat Length). While these stringent criteria were
applied for the prioritized candidate genes presented
herein, less restrictive standards could also be applied
to identify additional candidate genes with potentially
weaker statistical evidence. The complete list is avail-
able in Supplemental Table S9 (Wang et al., 2025a).
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Table 3. Highly credible candidate genes meeting stringent criteria (gene-level PCIP >0.8 and lead variant P-value <5 x 10°%)

Trait Candidate genes (posterior conditional inclusion probability [PCIP])

Milk Yield ABCCY9 (0.96), ABCG?2 (1.00), ACO2 (0.92), ARHGAP39 (0.97), COX6C (0.81), DGATI (0.80), GHR (0.96), GNAT3 (0.98),
KCNK3 (0.95), KI4A40930 (0.93), LPO (0.94), LRPS5 (0.96), RECOL (1.00), SLC4A44 (0.99), SMPD5 (0.93), SPATCI (0.93),
VPS13B (0.97)

Fat Yield DGATI (1.00), ENSBTAG00000004596 (1.00), ENSBTAG00000049400 (1.00), FANCC (0.95), FASN (0.97), GPIHBP1
(0.86), HSF1 (1.00), IGF2 (0.99), MGST1 (0.97), PLEC (1.00), ST3GAL4 (0.93), ZC3H3 (0.82)

Protein Yield ASTNI (0.95), C19H1 701149 (0.96), CUX2 (1.00), ENSBTAG00000048091 (0.91), FAM134 (0.96), FANCC (0.96), GCK

Fat Percentage

Protein Percentage

Final Score

Stature

Strength

Dairy Form

Foot Angle

Rear Legs (Side View)
Body Depth

Rump Angle

Rump Width
Fore Udder Attachment

Rear Udder Height

Rear Udder Width
Udder Depth

Udder Cleft

Front Teat Placement
Teat Length

Rear Legs (Rear View)
Rear Teat Placement
Net Merit

Productive Life

SCS

Livability

Gestation Length

(0.95), KCNN3 (0.96), RECQL (0.97), TBCID32 (0.98), bta-mir-195 (0.96), bta-mir-497 (0.96)

ABCG?2 (1.00), ADGRBI (1.00), ARHGAP39 (1.00), COX6C (0.98), ENSBTAG00000049400 (0.95), EPPKI (0.98), EPS8
(0.95), GHR (1.00), GPIHBPI (0.97), KCNK3 (0.92), MGSTI (0.99), PLEC (1.00), PUF60 (1.00), RNF217 (0.95), SCRIB
(1.00), TRAPPCY (0.97), VPSI13B (0.98), ZC3H3 (0.98), ZNF623 (0.98), bta-mir-2285be (0.91)

ABO (0.95), ADCY6 (1.00), C6 (0.98), CAPNI (1.00), COX6C (1.00), CYHRI (1.00), DGATI (1.00), EFNAI (0.99), GHR
(1.00), GMDS (0.96), GPIHBP1 (1.00), HERC3 (1.00), HSDI1B1 (0.99), HSFI (1.00), IRF6 (0.95), JAK2 (0.84), MEPE
(0.99), NNT (1.00), PAIPI (1.00), PKD2 (1.00), PLEC (0.95), POPI (0.84), RAVER2 (1.00), RNF217 (0.96), RNF43 (1.00),
SLC35B4 (0.95), SMIMI3 (1.00), SPX (1.00), TAF6L (0.94), TBC1D224 (1.00), TRIM46 (0.98), VPSI3B (1.00), WNTI0B
(1.00), ZNF250 (0.95), ZNF623 (0.83)

ATAD?2 (0.87), CDYL2 (0.95), ENSBTAG00000054384 (0.96), RDHS (0.94), TAFAI (0.95)

CCND2 (0.95), CPEB3 (0.96), DIS3L2 (0.95), ENSBTAG00000054384 (0.96), ERICH4 (0.96), ESRI (0.96), FSTLI (0.98),
KMT5B (0.99), LHPP (0.96), NCOR2 (0.82), NPM1 (1.00), NRTN (1.00), RABEPI (0.83), RBFOX3 (1.00), RNASEH2B
(0.96), TMCO4 (0.94), TTC32 (1.00)

ABCCY (0.97), ARRDC3 (1.00), CCND2 (0.88), DHX34 (1.00), ENSBTAG00000004608 (0.84), ENSBTAG00000039491
(0.97), KCNK9 (0.85), PHF19 (0.80), ST3GALI (0.96)

ABCCY (0.96), GC (0.85), NREP (1.00)

DSC3 (0.87), STAG3 (0.93), TNNI2 (0.90)

DNMT34 (0.93), MYOID (1.00), SSH2 (0.82), TSPAN9 (0.96)

ARRDC3 (1.00), CCND2 (0.96), CHSY3 (1.00), ENSBTAG00000004608 (0.94), GHRH (0.93), IGF1 (0.90)

ABCAS5 (0.94), CDH4 (0.98), COLECI2 (0.97), ENSBTAG00000052955 (0.98), FBNI (0.96), LIPE (0.98), MPP7 (0.95),
NAV3 (0.95), ZNF652" (0.95)

CCDC77 (0.80), CCND2 (0.96), DNAI2 (0.95), GPRC5C (0.95), ZNF677 (0.96), ASPH* (0.96), SFMBTI * (0.95)

ABCCY (0.99), ARRDC3 (1.00), ENSBTAG00000053615 (0.95), NFATC2 (0.95), RUNXI (0.99), SOX5 (0.95), WDRSS
(0.97), AOPEP' (0.92)

ARRDC3 (0.99), CLIP2 (1.00), KCNMAI (0.95), KLHL29 (0.99), ODAD?2 (0.95), PRRXI (1.00), SLC24A3 (0.95), ZNF423
(1.00), VPSI13B"' (0.84),

ARID3B (0.99), ENSBTAG00000054109 (0.80), RIMSI (0.95), TMTC2 (0.94)

ABCCY (0.97), ARID4B (0.96), ARRDC3 (1.00), CHD3 (0.88), DOCK1 (1.00), ENSBTAG00000044837 (0.88),
ENSBTAG00000050669 (0.95), ENSBTAG00000053793 (1.00), ENSBTAG00000054384 (0.98), ESRI (0.95), FANCC
(0.96), FDFTI (0.96), FOXPI (0.95), GC (0.96), IGF2 (1.00), KIAA0930 (0.99), LRP5 (1.00), LSM14A4 (0.92), SEC23IP
(0.95), SHANK?2 (0.97)

EIF34 (1.00), ENSBTAG00000043641 (1.00), ENSBTAG00000049502 (0.95), IOCAIL (0.89), SNORA19 (1.00), TAFA4
(0.95), TSHZ3 (0.96), ZMIZ1 (0.95)

AKAPSL (0.85), TMTC2 (0.95)

AKAPI10 (0.96), AOPEP (0.95), ARRDC3 (0.81), CARSI (0.87), CPEDI (0.89), DEPDCS5 (1.00), JCAD (0.96), PHFI2
(0.90), PRKCZ (0.91), SEXN5 (0.87), SLC35D2 (0.95), TMTC2 (1.00), WNT74 (0.96), MAPRE2*(0.95)

CALCOCO? (1.00)

ACTNI (0.95), ADAM12 (0.96), CHNI (0.97), IRX2 (0.99), LMF1 (0.89), SUSDG6 (0.95), VPSI3B (0.96)

AGTRI (0.95), ARRDC3 (0.99), CAPN7 (0.95), ENSBTAG00000048639 (0.95), EXOC2 (0.92), OLFMI (0.99), OTOGL
(0.85), PLEC (1.00), TBX2 (0.83), MGSTI" (0.95)

ABCCY (0.95), BTBDY (0.96), CHSTS (1.00), DYRK4 (0.95), ERCC2 (0.96), FRMDS (0.96), GC (0.96), HELB (0.95), KLC3
(0.96), MFSDI4B (1.00), SEMA4D (0.89), bta-mir-2285¢r-2 (0.95)

APCDDIL (0.97), CMIP (0.97), CTIF (0.95), ENSBTAG00000055157 (0.92), INHCA (0.97), LARS2 (1.00), MTSSI (1.00),
NPNT (0.96), ROCK2 (0.97), SEPTINY (0.95), SLC7A49 (0.94)

BTBDY (0.91), ENSBTAG00000004608 (0.96), ENSBTAG00000049494 (0.96), LDHB (0.99), MGC137454 (0.97), PDE4B
(0.97), TRIP1I (0.91), E2F6' (0.85), GC' (0.97)

ADAMTS?2 (1.00), AKTI (1.00), BCOI (0.91), CFAP61 (0.87), CHD3 (1.00), CMIP (0.95), ENSBTAG00000044837 (1.00),
ENSBTAG00000051766 (0.98), GPSI (0.97), HNRNPH] (0.88), KDM74 (0.99), MGC137454 (0.90), NDFIPI (1.00),
SIVAI (1.00), TRAM?2 (1.00), ZNF532 (0.90)

"Denotes candidate genes within newly reported peaks in the current study.

DISCUSSION

In this study, we performed GWAS on a large cohort
of 50,309 Holstein bulls using imputed sequence data
comprising 11,292,243 quality-controlled variants and
subsequently applied Bayesian fine-mapping to iden-
tify causal variants and genes underlying 30 complex
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traits. This large-scale analysis significantly enhanced
statistical power for detecting genetic associations and
improved the precision of fine-mapping in identify-
ing causal variants. The absence of novel peaks for PY
traits is likely due to extensive prior research on these
economically critical traits, while numerous novel peaks
were discovered for TY and LH traits, which have his-
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torically received less research attention. Our GWAS
optimization revealed important considerations for con-
ducting association studies in dairy cattle populations.
The GRM construction analysis demonstrated that using
SNPs from genomic evaluation-centric chip panels can
lead to deflated association statistics, likely due to the
ascertainment bias of these markers toward large-effect
loci for economic traits (VanRaden et al., 2017). As
demonstrated by our findings, a randomly selected SNP
subset from imputed sequence data of an appropriate size
offered a better balance between maintaining statistical
power and controlling genomic inflation in test statistics.

A key aspect of our GWAS model was the incorporation
of deregressed PTA reliability into the residual term. By
weighting residuals inversely by reliability, pseudophe-
notypes with lower accuracy exert less influence on the
association statistics. The effect of modeling reliability
varied with trait characteristics, specifically the variation
in reliability among individuals. While traits exhibiting
low variance in reliability across animals (often those
with universally high reliability) showed minimal differ-
ences in association patterns between the 2 models, traits
with higher variance in reliability (where individuals
differ substantially in PTA accuracy) demonstrated sub-
stantial improvements in peak detection when reliability
was incorporated. Incorporating reliability into GWAS
improved model fitting and increased statistical power.
These findings underscore the necessity of modeling reli-
ability in GWAS when deregressed PTA serve as pseudo-
phenotypes, particularly for traits where individual PTA
reliabilities vary considerably, such as in analyses that
include both bulls and cows.

Most existing fine-mapping methods (Chen et al.,
2015; Benner et al., 2016; Zou et al., 2022) are based
on linear regression, which assumes samples are largely
unrelated. This assumption is suitable for human data-
sets, and the linear regression framework simplifies
the utilization of summary statistics for fine-mapping.
These methods have often been used in farm animal
fine-mapping studies (Li et al., 2020; Gualdrén Duarte
et al., 2023; Qiu et al., 2024); unfortunately, such use
violates the assumption in livestock populations where
individuals are generally closely related, which can lead
to poor fine-mapping performance, as demonstrated in
our other study (Wang et al., 2025b). To address this lim-
itation, the current study employed BFMAP, which uses
a linear mixed model framework that accounts for the
relatedness among individuals. Our analysis produced a
comprehensive list of candidate variants and genes that
serve as promising targets for future functional valida-
tion studies. In contrast to most conventional GWAS,
which typically reported associated SNPs or genes near
a peak without formal statistical prioritization, our study
offers a systematic prioritization derived from Bayesian
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fine-mapping, yielding statistically supported candidate
variants and genes.

Traditional GWAS in farm animals typically nominate
candidate genes by proximity to the lead SNP, without
statistical prioritization of causality (Iung et al., 2019;
Jiang et al., 2019b; Gao et al., 2023). This strategy typi-
cally yields broad candidate lists, which can hinder ef-
ficient functional follow-up investigations. In contrast,
our fine-mapping strategy substantially narrows down
this range by providing direct statistical evidence for
candidate variants and genes. For example, MGSTI
(Chr5:93,497,064-93,521,047) has been repeatedly re-
ported to be associated with milk composition traits, but
conventional GWAS would report it alongside numerous
neighboring genes (Cai et al., 2020; Teng et al., 2023).
Our study provides direct statistical evidence through
gene prioritization showing that MGSTI emerges as the
most credible candidate gene (PCIP = 0.99 for Fat Per-
cent) in this genomic region. By calculating gene-level
PCIP, a direct probabilistic link to genes was established,
effectively transitioning from variant-level evidence to
gene-level inferences. Our previous simulation analy-
sis indicated that accurately fine-mapping individual
causal variants in farm animals remains challenging in
maintaining a low false discovery rate while preserv-
ing statistical power, largely due to the strong linkage
disequilibrium. Gene-level analysis, however, achieves
a more favorable balance between power and precision,
making it a more robust approach for causal inference
in farm animal populations (Wang et al., 2025b). The
stringent criteria employed herein (gene-level PCIP
>0.8 and lead variant P-value <5 x 10°°) facilitated the
prioritization of the candidate genes with strong statisti-
cal support, resulting in a narrow set of high-confidence
candidate genes rather than the typically extensive lists
generated by proximity-based approaches. Despite our
GWAS detecting 126 novel peaks, only 9 novel genes
met our stringent criteria, indicating that many newly
discovered loci exhibit weaker signals that do not firmly
establish causal relationships. It is worth noting that the
criteria used to select candidate genes were not intended
as an absolute gold standard but rather as a conservative
approach to minimize false positives. Employing more
lenient criteria could potentially identify additional can-
didate genes with weaker evidence, offering a broader
scope for further investigation.

The 9 novel candidate genes identified through our
stringent fine-mapping approach represent newly identi-
fied candidate genes for their respective traits and warrant
further investigation for their roles in dairy traits. Amino-
peptidase O (AOPEP), a candidate gene for Fore Udder
Attachment, encodes a zinc-dependent metallopeptidase,
and specific pathogenic biallelic loss-of-function vari-
ants in this gene cause autosomal recessive dystonia in
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humans (Garavaglia et al., 2022; Zech et al., 2022). Vacu-
olar protein sorting 13 homolog B (VPS13B), identified as
a candidate gene for Rear Udder Height, encodes a large
transmembrane protein involved in vesicular trafficking.
In humans, pathogenic mutations of this gene cause Co-
hen syndrome (Duplomb et al., 2019; Momtazmanesh et
al., 2020), and in mice, Vpsi3b knockouts cause male
infertility through Golgi disruption (Nagata et al., 2018).
Our study also identified this gene as the candidate gene
for milk production traits, suggesting pleiotropic effects
or involvement in related functional pathways influenc-
ing these traits in dairy cattle. Microsomal glutathione
S-transferase 1 (MGSTI) was identified in our study as
a candidate gene for Fat Yield, Fat Percentage, and Net
Merit. It was detected in a newly identified peak for Net
Merit, suggesting the economic significance of this gene
in dairy cattle breeding programs. Vitamin D binding
protein (GC) and E2F transcription factor 6 (E2F6) were
prioritized for Livability. The GC gene encodes the vita-
min D binding protein involved in vitamin D transport
and immune function (White and Cooke, 2000). While
previous fine-mapping studies have implicated GC as a
candidate gene for clinical mastitis resistance in cattle
(Olsen et al., 2016; Freebern et al., 2020; Lee et al.,
2021), our study provides statistical evidence supporting
GC as a novel candidate gene for Livability. The E2F6
gene encodes a transcriptional repressor. Mice lacking
E2f6 exhibit homeotic axial skeletal transformations and
testicular histological abnormalities but retain fertility
(Storre et al., 2002). Zinc finger protein 652 (ZNF652),
candidate gene for Rump Angle, encodes a C2H2-type
zinc finger transcriptional repressor that regulates gene
networks in cell differentiation (Kumar et al., 2010)
and functions as a tumor suppressor in human lung ad-
enocarcinoma by arresting cells in G; and thus reducing
cell proliferation (Xie et al., 2024). For Rump Width,
2 genes, aspartate B-hydroxylase (ASPH) and scm like
with 4 mbt domains 1 (SFMBTI), were prioritized. The
SFMBTI gene encodes a chromatin-binding repressor
that partners with histone-modifying enzymes to silence
key histone genes, regulate myogenic differentiation, and
function during spermatogenesis (Lin et al., 2013; Zhang
et al., 2013). The ASPH gene encodes an enzyme in the
endoplasmic reticulum that modifies calcium-binding
proteins to help cells maintain proper calcium balance.
Pathogenic ASPH mutations in humans cause Traboulsi
syndrome, which features lens dislocation and facial
dysmorphism (Pfeffer et al., 2019; Jones et al., 2022).
Microtubule-associated protein RP/EB family member 2
(MAPRE?2), a candidate gene for Teat Length, encodes
a conserved microtubule plus-end tracking protein that
stabilizes spindle microtubules during oocyte meiosis.
In mouse oocytes, knockdown of Mapre2 using siRNA-
disrupts kinetochore-microtubule attachments, activates
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the spindle-assembly checkpoint, and prevents first polar
body extrusion (Li et al., 2022).

While this study benefited from a large sample size and
sequence-level variant data, certain limitations should be
acknowledged. First, our analysis focused exclusively
on quality-controlled, imputed biallelic SNPs. Conse-
quently, we did not investigate the potential contribu-
tions of other important classes of genetic variation, such
as multiallelic SNPs, insertions-deletions (indels), and
larger structural variants, which may also influence the
complex traits studied and warrant investigation in future
research. Second, while imputation enables genome-wide
coverage, the accuracy of imputed genotypes may vary,
particularly for lower-frequency variants or variants
located in regions with complex linkage disequilibrium
patterns or limited coverage in the reference panel. This
inherent uncertainty associated with imputation could
potentially influence the precision of fine-mapping re-
sults, potentially affecting the definitive identification of
causal variants or the exact composition of credible sets.
Acknowledging these limitations is crucial for interpret-
ing and contextualizing the study’s findings accurately.

CONCLUSIONS

Our study underscores the necessity of optimizing
GRM construction and incorporating reliability informa-
tion in GWAS using deregressed PTA, particularly for
traits with high variation in reliability across individu-
als. By leveraging a large cohort of Holstein bulls and
imputed sequence data, our comprehensive GWAS and
Bayesian fine-mapping analysis identified many novel
associations and prioritized candidate variants and genes
for 30 complex traits in dairy cattle. These findings pro-
vide new insights into the genetic architecture of produc-
tion, conformation, and health traits in dairy cattle and
serve as a valuable resource for further functional valida-
tion and enhancement of breeding strategies to improve
dairy productivity and health.

NOTES

We thank the CDCB (Bowie, MD), CDDR (Madison,
WI), and dairy industry contributors for providing data
access. We also thank PaulM. VanRaden for his valuable
comments. This work is supported by the Agriculture and
Food Research Initiative (AFRI) Foundational and Ap-
plied Science Program, project award no. 2021-67015-
33409, 2023-67015-39260, 2024-67015-42295, and the
Research Capacity Fund (HATCH), project award no.
7008128, from the USDA’s National Institute of Food
and Agriculture (Washington, DC). This research used
resources provided by the SCINet project and the Al
Center of Excellence of the USDA Agricultural Research



Wang et al.: GWAS AND FINE-MAPPING IN HOLSTEIN BULLS

Service, ARS project 0201-88888-003-000D and 0201-
88888-002-000D. The sole ownership and rights of the
data remain with the producer, and we express our grati-
tude to US dairy producers for sharing their data for re-
search purposes. Mention of trade names or commercial
products in this article is solely for the purpose of provid-
ing specific information and does not imply recommen-
dation or endorsement by the USDA. The USDA is an
equal opportunity provider and employer. Fine-mapping
summary statistics of all 30 dairy traits, Supplemental
Tables, and Supplemental Figures are available in the
Dryad Digital Repository (https://doi.org/10.5061/dryad
.vmcvdnd3q). This repository is temporarily private
during peer review. Reviewers can access these materi-
als using the following link: http://datadryad.org/share/
tTt2BC_5m1NRqjxvIAulFblDzSIs85hDUZnlAS525TRw.
No human or animal subjects were used, so this analysis
did not require approval by an Institutional Animal Care
and Use Committee or Institutional Review Board. The
authors have not stated any conflicts of interest.

Nonstandard abbreviationsused: CDCB = Council
on Dairy Breeding; CDDR = Cooperative Dairy DNA
Repository; GRM = genomic relationship matrix; LH =
longevity and health; PCIP = posterior conditional inclu-
sion probability; PY = production and yield; TY = type.

REFERENCES

Arranz, J.-J., W. Coppieters, P. Berzi, N. Cambisano, B. Grisart, L.
Karim, F. Marcq, L. Moreau, C. Mezer, J. Riquet, P. Simon, P. Van-
manshoven, D. Wagenaar, and M. Georges. 1998. A QTL affecting
milk yield and composition maps to bovine chromosome 20: A con-
firmation. Anim. Genet. 29:107-115. https://doi.org/10.1046/j.1365
-2052.1998.00307.x.

Benner, C., C. C. A. Spencer, A. S. Havulinna, V. Salomaa, S. Ripatti,
and M. Pirinen. 2016. FINEMAP: Efficient variable selection using
summary data from genome-wide association studies. Bioinformat-
ics 32:1493-1501. https://doi.org/10.1093/bioinformatics/btw018.

Cai, Z., M. Dusza, B. Guldbrandtsen, M. S. Lund, and G. Sahana. 2020.
Distinguishing pleiotropy from linked QTL between milk production
traits and mastitis resistance in Nordic Holstein cattle. Genet. Sel.
Evol. 52:19. https://doi.org/10.1186/s12711-020-00538-6.

Cai, W., Y. Zhang, T. Chang, Z. Wang, B. Zhu, Y. Chen, X. Gao, L. Xu, L.
Zhang, H. Gao, J. Song, and J. Li. 2023a. The eQTL colocalization
and transcriptome-wide association study identify potentially causal
genes responsible for economic traits in Simmental beef cattle. J.
Anim. Sci. Biotechnol. 14:78. https://doi.org/10.1186/s40104-023
-00876-7.

Cai, Z., X. Wu, B. Thomsen, M. S. Lund, and G. Sahana. 2023b. Ge-
nome-wide association study identifies functional genomic variants
associated with young stock survival in Nordic Red Dairy Cattle. J.
Dairy Sci. 106:7832-7845. https://doi.org/10.3168/jds.2023-23252.

Chen, W., B. R. Larrabee, I. G. Ovsyannikova, R. B. Kennedy, 1. H.
Haralambieva, G. A. Poland, and D. J. Schaid. 2015. Fine mapping
causal variants with an approximate Bayesian method using mar-
ginal test statistics. Genetics 200:719-736. https://doi.org/10.1534/
genetics.115.176107.

Cheng, J., C. Maltecca, P. M. VanRaden, J. R. O’Connell, L. Ma, and
J. Jiang. 2023. SLEMM: Million-scale genomic predictions with
window-based SNP weighting. Bioinformatics 39:btad127. https://
doi.org/10.1093/bioinformatics/btad127.

Journal of Dairy Science Vol. TBC No. TBC, TBC

Cohen-Zinder, M., E. Seroussi, D. M. Larkin, J. J. Loor, A. E. Wind,
J.-H. Lee, J. K. Drackley, M. R. Band, A. G. Hernandez, M. Shani,
H. A. Lewin, J. I. Weller, and M. Ron. 2005. Identification of a mis-
sense mutation in the bovine ABCG2 gene with a major effect on
the QTL on chromosome 6 affecting milk yield and composition in
Holstein cattle. Genome Res. 15:936-944. https://doi.org/10.1101/
2r.3806705.

de Roos, A. P. W., B. J. Hayes, R. J. Spelman, and M. E. Goddard. 2008.
Linkage disequilibrium and persistence of phase in Holstein—Frie-
sian, Jersey and Angus cattle. Genetics 179:1503-1512. https://doi
.org/10.1534/genetics.107.084301.

Duplomb, L., J. Rivieére, G. Jego, R. Da Costa, A. Hammann, J. Ra-
cine, A. Schmitt, N. Droin, C. Capron, M.-A. Gougerot-Pocidalo,
L. Dubrez, B. Aral, A. Lafon, P. Edery, J. Ghoumid, E. Blair, S. El
Chehadeh-Djebbar, V. Carmignac, J. Thevenon, J. Guy, F. Girodon,
J.-N. Bastie, L. Delva, L. Faivre, C. Thauvin-Robinet, and E. Solary.
2019. Serpin B1 defect and increased apoptosis of neutrophils in Co-
hen syndrome neutropenia. J. Mol. Med. (Berl.) 97:633-645. https:/
/doi.org/10.1007/s00109-019-01754-4.

Freebern, E., D. J. A. Santos, L. Fang, J. Jiang, K. L. Parker Gaddis,
G. E. Liu, P. M. VanRaden, C. Maltecca, J. B. Cole, and L. Ma.
2020. GWAS and fine-mapping of livability and six disease traits
in Holstein cattle. BMC Genomics 21:41. https://doi.org/10.1186/
$12864-020-6461-z.

Gao, Y., A. Marceau, V. Igbal, J. A. Torres-Vazquez, M. Neupane, J. Ji-
ang, G. E. Liu, and L. Ma. 2023. Genome-wide association analysis
of heifer livability and early first calving in Holstein cattle. BMC
Genomics 24:628. https://doi.org/10.1186/s12864-023-09736-0.

Garavaglia, B., S. Vallian, L. M. Romito, G. Straccia, M. Capecci, F.
Invernizzi, E. Andrenelli, A. Kazemi, S. Boesch, R. Kopajtich, N.
Olfati, M. Shariati, A. Shoeibi, A. Sadr-Nabavi, H. Prokisch, J. Win-
kelmann, and M. Zech. 2022. AOPEP variants as a novel cause of re-
cessive dystonia: Generalized dystonia and dystonia-parkinsonism.
Parkinsonism Relat. Disord. 97:52-56. https://doi.org/10.1016/]
.parkreldis.2022.03.007.

Garcia-Ruiz, A., J. B. Cole, P. M. VanRaden, G. R. Wiggans, F. J. Ruiz-
Lopez, and C. P. Van Tassell. 2016. Changes in genetic selection
differentials and generation intervals in US Holstein dairy cattle as a
result of genomic selection. Proc. Natl. Acad. Sci. USA 113:E3995-
E4004. https://doi.org/10.1073/pnas.1519061113.

Ghoreishifar, S. M., S. Eriksson, A. M. Johansson, M. Khansefid, S.
Moghaddaszadeh-Ahrabi, N. Parna, P. Davoudi, and A. Javanmard.
2020. Signatures of selection reveal candidate genes involved in
economic traits and cold acclimation in five Swedish cattle breeds.
Genet. Sel. Evol. 52:52. https://doi.org/10.1186/s12711-020-00571
-5.

Goddard, M. E., and B. J. Hayes. 2009. Mapping genes for complex
traits in domestic animals and their use in breeding programmes.
Nat. Rev. Genet. 10:381-391. https://doi.org/10.1038/nrg2575.

Grisart, B., W. Coppieters, F. Farnir, L. Karim, C. Ford, P. Berzi, N.
Cambisano, M. Mni, S. Reid, P. Simon, R. Spelman, M. Georges,
and R. Snell. 2002. Positional candidate cloning of a QTL in dairy
cattle: Identification of a missense mutation in the bovine DGAT1
gene with major effect on milk yield and composition. Genome Res.
12:222-231. https://doi.org/10.1101/gr.224202.

Gualdron Duarte, J. L., C. Yuan, A.-S. Gori, G. C. M. Moreira, H.
Takeda, W. Coppieters, C. Charlier, M. Georges, and T. Druet. 2023.
Sequenced-based GWAS for linear classification traits in Belgian
Blue beef cattle reveals new coding variants in genes regulating
body size in mammals. Genet. Sel. Evol. 55:83. https://doi.org/10
.1186/512711-023-00857-4.

Guinan, F. L., G. R. Wiggans, H. D. Norman, J. W. Diirr, J. B. Cole, C. P.
Van Tassell, I. Misztal, and D. Lourenco. 2023. Changes in genetic
trends in US dairy cattle since the implementation of genomic selec-
tion. J. Dairy Sci. 106:1110-1129. https://doi.org/10.3168/jds.2022
-22205.

Hayes, B. J., and H. D. Daetwyler. 2019. 1000 Bull Genomes Project to
map simple and complex genetic traits in cattle: Applications and
outcomes. Annu. Rev. Anim. Biosci. 7:89-102. https://doi.org/10
.1146/annurev-animal-020518-115024.


https://doi.org/10.5061/dryad.vmcvdnd3q
https://doi.org/10.5061/dryad.vmcvdnd3q
http://datadryad.org/share/tTt2BC_5m1NRqjxvIAulFblDzSIs85hDUZnlA525TRw
http://datadryad.org/share/tTt2BC_5m1NRqjxvIAulFblDzSIs85hDUZnlA525TRw
https://doi.org/10.1046/j.1365-2052.1998.00307.x
https://doi.org/10.1046/j.1365-2052.1998.00307.x
https://doi.org/10.1093/bioinformatics/btw018
https://doi.org/10.1186/s12711-020-00538-6
https://doi.org/10.1186/s40104-023-00876-7
https://doi.org/10.1186/s40104-023-00876-7
https://doi.org/10.3168/jds.2023-23252
https://doi.org/10.1093/bioinformatics/btad127
https://doi.org/10.1093/bioinformatics/btad127
https://doi.org/10.1101/gr.3806705
https://doi.org/10.1101/gr.3806705
https://doi.org/10.1534/genetics.107.084301
https://doi.org/10.1534/genetics.107.084301
https://doi.org/10.1007/s00109-019-01754-4
https://doi.org/10.1007/s00109-019-01754-4
https://doi.org/10.1186/s12864-020-6461-z
https://doi.org/10.1186/s12864-020-6461-z
https://doi.org/10.1186/s12864-023-09736-0
https://doi.org/10.1016/j.parkreldis.2022.03.007
https://doi.org/10.1016/j.parkreldis.2022.03.007
https://doi.org/10.1073/pnas.1519061113
https://doi.org/10.1186/s12711-020-00571-5
https://doi.org/10.1186/s12711-020-00571-5
https://doi.org/10.1038/nrg2575
https://doi.org/10.1101/gr.224202
https://doi.org/10.1186/s12711-023-00857-4
https://doi.org/10.1186/s12711-023-00857-4
https://doi.org/10.3168/jds.2022-22205
https://doi.org/10.3168/jds.2022-22205
https://doi.org/10.1146/annurev-animal-020518-115024
https://doi.org/10.1146/annurev-animal-020518-115024

Wang et al.: GWAS AND FINE-MAPPING IN HOLSTEIN BULLS

Hu, Z.-L., C. A. Park, and J. M. Reecy. 2022. Bringing the Animal
QTLdb and CorrDB into the future: Meeting new challenges and
providing updated services. Nucleic Acids Res. 50(D1):D956-D961.
https://doi.org/10.1093/nar/gkab1116.

Tung, L. H. S., J. Petrini, J. Ramirez-Diaz, M. Salvian, G. A. Rovadoscki,
F. Pilonetto, B. D. Dauria, P. F. Machado, L. L. Coutinho, G. R.
Wiggans, and G. B. Mourao. 2019. Genome-wide association study
for milk production traits in a Brazilian Holstein population. J. Dairy
Sci. 102:5305-5314. https://doi.org/10.3168/jds.2018-14811.

Jiang, J., J. B. Cole, E. Freebern, Y. Da, P. M. VanRaden, and L. Ma.
2019a. Functional annotation and Bayesian fine-mapping reveals
candidate genes for important agronomic traits in Holstein bulls.
Commun. Biol. 2:212. https://doi.org/10.1038/s42003-019-0454-y.

Jiang, J., L. Ma, D. Prakapenka, P. M. VanRaden, J. B. Cole, and Y.
Da. 2019b. A large-scale genome-wide association study in U.S.
Holstein cattle. Front. Genet. 10:412. https://doi.org/10.3389/fgene
.2019.00412.

Jones, G., K. Johnson, J. Eason, M. Hamilton, D. Osio, F. Kanani, J.
Baptista, and M. Suri. 2022. Traboulsi syndrome caused by muta-
tions in ASPH: An autosomal recessive disorder with overlapping
features of Marfan syndrome. Eur. J. Med. Genet. 65:104572. https:
//doi.org/10.1016/j.ejmg.2022.104572.

Kent, W.J., C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M.
Zahler, and D. Haussler. 2002. The human genome browser at UCSC.
Genome Res. 12:996-1006. https://doi.org/10.1101/gr.229102.

Kim, E.-S., and B. W. Kirkpatrick. 2009. Linkage disequilibrium in the
North American Holstein population. Anim. Genet. 40:279-288.
https://doi.org/10.1111/j.1365-2052.2008.01831.x.

Korte, A., and A. Farlow. 2013. The advantages and limitations of trait
analysis with GWAS: A review. Plant Methods 9:29. https://doi.org/
10.1186/1746-4811-9-29.

Kumar, R., K. M. Cheney, P. M. Neilsen, R. B. Schulz, and D. F. Cal-
len. 2010. CBFA2T3-ZNF651, like CBFA2T3-ZNF652, functions
as a transcriptional corepressor complex. FEBS Lett. 584:859-864.
https://doi.org/10.1016/j.febslet.2010.01.047.

Lee, Y.-L., H. Takeda, G. Costa Monteiro Moreira, L. Karim, E. Mullaart,
W. Coppieters, R. Appeltant, R. F. Veerkamp, M. A. M. Groenen,
M. Georges, M. Bosse, T. Druet, A. C. Bouwman, and C. Charlier.
2021. A 12 kb multi-allelic copy number variation encompassing
a GC gene enhancer is associated with mastitis resistance in dairy
cattle. PLoS Genet. 17:¢1009331. https://doi.org/10.1371/journal
.pgen.1009331.

Li, Y., B. Li, M. Yang, H. Han, T. Chen, Q. Wei, Z. Miao, L. Yin, R.
Wang, J. Shen, X. Li, X. Xu, M. Fang, and S. Zhao. 2020. Genome-
wide association study and fine mapping reveals candidate genes for
birth weight of Yorkshire and Landrace pigs. Front. Genet. 11:183.
https://doi.org/10.3389/fgene.2020.00183.

Li, Y.-Y., W.-L. Lei, C.-F. Zhang, S.-M. Sun, B.-W. Zhao, K. Xu, Y. Hou,
Y.-C. Ouyang, Z.-B. Wang, L. Guo, Q.-Y. Sun, and Z. Han. 2022.
MAPRE2 regulates the first meiotic progression in mouse oocytes.
Exp. Cell Res. 416:113135. https://doi.org/10.1016/j.yexcr.2022
.113135.

Lin, S., H. Shen, J.-L. Li, S. Tang, Y. Gu, Z. Chen, C. Hu, J. C. Rice, J.
Lu, and L. Wu. 2013. Proteomic and functional analyses reveal the
role of chromatin reader SFMBT]1 in regulating epigenetic silencing
and the myogenic gene program. J. Biol. Chem. 288:6238-6247.
https://doi.org/10.1074/jbc.M112.429605.

McCarthy, M. 1., G. R. Abecasis, L. R. Cardon, D. B. Goldstein, J.
Little, J. P. A. Ioannidis, and J. N. Hirschhorn. 2008. Genome-wide
association studies for complex traits: Consensus, uncertainty and
challenges. Nat. Rev. Genet. 9:356-369. https://doi.org/10.1038/
nrg2344.

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction
of total genetic value using genome-wide dense marker maps. Genet-
ics 157:1819-1829. https://doi.org/10.1093/genetics/157.4.1819.

Miglior, F., A. Fleming, F. Malchiodi, L. F. Brito, P. Martin, and C. F.
Baes. 2017. A 100-Year Review: ldentification and genetic selec-
tion of economically important traits in dairy cattle. J. Dairy Sci.
100:10251-10271. https://doi.org/10.3168/jds.2017-12968.

Momtazmanesh, S., E. Rayzan, S. Shahkarami, M. Rohlfs, C. Klein, and
N. Rezaei. 2020. A novel VPS13B mutation in Cohen syndrome: A

Journal of Dairy Science Vol. TBC No. TBC, TBC

case report and review of literature. BMC Med. Genet. 21:140. https:
//doi.org/10.1186/s12881-020-01075-1.

Nagata, O., M. Nakamura, H. Sakimoto, Y. Urata, N. Sasaki, N. Shio-
kawa, and A. Sano. 2018. Mouse model of chorea-acanthocytosis ex-
hibits male infertility caused by impaired sperm motility as a result
of ultrastructural morphological abnormalities in the mitochondrial
sheath in the sperm midpiece. Biochem. Biophys. Res. Commun.
503:915-920. https://doi.org/10.1016/j.bbrc.2018.06.096.

Olsen, H. G., T. M. Knutsen, A. M. Lewandowska-Sabat, H. Grove, T.
Nome, M. Svendsen, M. Arnyasi, M. Sodeland, K. K. Sundsaasen, S.
R. Dahl, B. Heringstad, H. H. Hansen, 1. Olsaker, M. P. Kent, and S.
Lien. 2016. Fine mapping of a QTL on bovine chromosome 6 using
imputed full sequence data suggests a key role for the group-spe-
cific component (GC) gene in clinical mastitis and milk production.
Genet. Sel. Evol. 48:79. https://doi.org/10.1186/s12711-016-0257-2.

Pfeffer, 1., L. Brewitz, T. Krojer, S. A. Jensen, G. T. Kochan, N. J. Ker-
shaw, K. S. Hewitson, L. A. McNeill, H. Kramer, M. Miinzel, R. J.
Hopkinson, U. Oppermann, P. A. Handford, M. A. McDonough, and
C. J. Schofield. 2019. Aspartate/asparagine-B-hydroxylase crystal
structures reveal an unexpected epidermal growth factor-like domain
substrate disulfide pattern. Nat. Commun. 10:4910. https://doi.org/
10.1038/s41467-019-12711-7.

Qiu, Z., W. Cai, Q. Liu, K. Liu, C. Liu, H. Yang, R. Huang, P. Li, and
Q. Zhao. 2024. Unravelling novel and pleiotropic genes for cannon
bone circumference and bone mineral density in Yorkshire pigs. J.
Anim. Sci. 102:skae036. https://doi.org/10.1093/jas/skae036.

Rosen, B. D., D. M. Bickhart, R. D. Schnabel, S. Koren, C. G. Elsik, E.
Tseng, T. N. Rowan, W. Y. Low, A. Zimin, C. Couldrey, R. Hall, W.
Li, A. Rhie, J. Ghurye, S. D. McKay, F. Thibaud-Nissen, J. Hoffman,
B. M. Murdoch, W. M. Snelling, T. G. McDaneld, J. A. Hammond,
J. C. Schwartz, W. Nandolo, D. E. Hagen, C. Dreischer, S. J. Schul-
theiss, S. G. Schroeder, A. M. Phillippy, J. B. Cole, C. P. Van Tassell,
G. Liu, T. P. L. Smith, and J. F. Medrano. 2020. De novo assembly
of the cattle reference genome with single-molecule sequencing. Gi-
gascience 9:giaa021. https://doi.org/10.1093/gigascience/giaa021.

Rubinacci, S., O. Delaneau, and J. Marchini. 2020. Genotype imputa-
tion using the Positional Burrows Wheeler Transform. PLoS Genet.
16:€1009049. https://doi.org/10.1371/journal.pgen.1009049.

Saatchi, M., R. D. Schnabel, J. F. Taylor, and D. J. Garrick. 2014. Large-
effect pleiotropic or closely linked QTL segregate within and across
ten US cattle breeds. BMC Genomics 15:442. https://doi.org/10
.1186/1471-2164-15-442.

Schmidtmann, C., D. Segelke, J. Bennewitz, J. Tetens, and G. Thaller.
2023. Genetic analysis of production traits and body size measure-
ments and their relationships with metabolic diseases in German
Holstein cattle. J. Dairy Sci. 106:421-438. https://doi.org/10.3168/
jds.2022-22363.

Seabury, C. M., D. L. Oldeschulte, M. Saatchi, J. E. Beever, J. E. Decker,
Y. A. Halley, E. K. Bhattarai, M. Molaei, H. C. Freetly, S. L. Han-
sen, H. Yampara-Iquise, K. A. Johnson, M. S. Kerley, J. Kim, D.
D. Loy, E. Marques, H. L. Neibergs, R. D. Schnabel, D. W. Shike,
M. L. Spangler, R. L. Weaber, D. J. Garrick, and J. F. Taylor. 2017.
Genome-wide association study for feed efficiency and growth traits
in U.S. beef cattle. BMC Genomics 18:386. https://doi.org/10.1186/
$12864-017-3754-y.

Storre, J., H.-P. Elsdsser, M. Fuchs, D. Ullmann, D. M. Livingston, and
S. Gaubatz. 2002. Homeotic transformations of the axial skeleton
that accompany a targeted deletion of £2f6. EMBO Rep. 3:695-700.
https://doi.org/10.1093/embo-reports/kvf141.

Stram, D. O. 2004. Tag SNP selection for association studies. Genet.
Epidemiol. 27:365-374. https://doi.org/10.1002/gepi.20028.

Teng, J., D. Wang, C. Zhao, X. Zhang, Z. Chen, J. Liu, D. Sun, H. Tang,
W. Wang, J. Li, C. Mei, Z. Yang, C. Ning, and Q. Zhang. 2023. Lon-
gitudinal genome-wide association studies of milk production traits
in Holstein cattle using whole-genome sequence data imputed from
medium-density chip data. J. Dairy Sci. 106:2535-2550. https://doi
.org/10.3168/jds.2022-22277.

VanRaden, P. M., C. Van Tassell, G. Wiggans, T. Sonstegard, R. Schna-
bel, J. Taylor, and F. Schenkel. 2009. Invited review: Reliability of
genomic predictions for North American Holstein bulls. J. Dairy Sci.
92:16-24. https://doi.org/10.3168/jds.2008-1514.


https://doi.org/10.1093/nar/gkab1116
https://doi.org/10.3168/jds.2018-14811
https://doi.org/10.1038/s42003-019-0454-y
https://doi.org/10.3389/fgene.2019.00412
https://doi.org/10.3389/fgene.2019.00412
https://doi.org/10.1016/j.ejmg.2022.104572
https://doi.org/10.1016/j.ejmg.2022.104572
https://doi.org/10.1101/gr.229102
https://doi.org/10.1111/j.1365-2052.2008.01831.x
https://doi.org/10.1186/1746-4811-9-29
https://doi.org/10.1186/1746-4811-9-29
https://doi.org/10.1016/j.febslet.2010.01.047
https://doi.org/10.1371/journal.pgen.1009331
https://doi.org/10.1371/journal.pgen.1009331
https://doi.org/10.3389/fgene.2020.00183
https://doi.org/10.1016/j.yexcr.2022.113135
https://doi.org/10.1016/j.yexcr.2022.113135
https://doi.org/10.1074/jbc.M112.429605
https://doi.org/10.1038/nrg2344
https://doi.org/10.1038/nrg2344
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.3168/jds.2017-12968
https://doi.org/10.1186/s12881-020-01075-1
https://doi.org/10.1186/s12881-020-01075-1
https://doi.org/10.1016/j.bbrc.2018.06.096
https://doi.org/10.1186/s12711-016-0257-2
https://doi.org/10.1038/s41467-019-12711-7
https://doi.org/10.1038/s41467-019-12711-7
https://doi.org/10.1093/jas/skae036
https://doi.org/10.1093/gigascience/giaa021
https://doi.org/10.1371/journal.pgen.1009049
https://doi.org/10.1186/1471-2164-15-442
https://doi.org/10.1186/1471-2164-15-442
https://doi.org/10.3168/jds.2022-22363
https://doi.org/10.3168/jds.2022-22363
https://doi.org/10.1186/s12864-017-3754-y
https://doi.org/10.1186/s12864-017-3754-y
https://doi.org/10.1093/embo-reports/kvf141
https://doi.org/10.1002/gepi.20028
https://doi.org/10.3168/jds.2022-22277
https://doi.org/10.3168/jds.2022-22277
https://doi.org/10.3168/jds.2008-1514

Wang et al.: GWAS AND FINE-MAPPING IN HOLSTEIN BULLS

VanRaden, P. M. 2008. Efficient methods to compute genomic predic-
tions. J. Dairy Sci. 91:4414-4423. https://doi.org/10.3168/jds.2007
-0980.

VanRaden, P. M. 2016. Practical implications for genetic modeling in the
genomics eral. J. Dairy Sci. 99:2405-2412. https://doi.org/10.3168/
jds.2015-10038.

VanRaden, P. M., J. R. O’Connell, G. R. Wiggans, and K. A. Weigel.
2011. Genomic evaluations with many more genotypes. Genet. Sel.
Evol. 43:10. https://doi.org/10.1186/1297-9686-43-10.

VanRaden, P. M., M. E. Tooker, J. R. O’Connell, J. B. Cole, and D.
M. Bickhart. 2017. Selecting sequence variants to improve genomic
predictions for dairy cattle. Genet. Sel. Evol. 49:32. https://doi.org/
10.1186/s12711-017-0307-4.

Viitala, S., J. Szyda, S. Blott, N. Schulman, M. Lidauer, A. Méki-Tanila,
M. Georges, and J. Vilkki. 2006. The role of the bovine growth hor-
mone receptor and prolactin receptor genes in milk, fat and protein
production in Finnish Ayrshire dairy cattle. Genetics 173:2151-2164.
https://doi.org/10.1534/genetics.105.046730.

Wang, J., Y. Gao, L. Ma, and J. Jiang. 2025a. Supplemental material for:
Genome-Wide Association Study and Bayesian Fine-Mapping for
30 Production, Conformation and Health Traits in 50,309 Holstein
Cattle.

Weigel, K. A., P. M. VanRaden, H. D. Norman, and H. Grosu. 2017. 4
100-Year Review: Methods and impact of genetic selection in dairy
cattle—From daughter-dam comparisons to deep learning algo-
rithms. J. Dairy Sci. 100:10234-10250. https://doi.org/10.3168/jds
.2017-12954.

Weller, J. 1., E. Ezra, and M. Ron. 2017. Invited review: A perspective
on the future of genomic selection in dairy cattle. J. Dairy Sci.
100:8633-8644. https://doi.org/10.3168/jds.2017-12879.

Weng, Z., H. Su, M. Saatchi, J. Lee, M. G. Thomas, J. R. Dunkelberger,
and D. J. Garrick. 2016. Genome-wide association study of growth
and body composition traits in Brangus beef cattle. Livest. Sci.
183:4-11. https://doi.org/10.1016/j.livsci.2015.11.011.

White, P., and N. Cooke. 2000. The multifunctional properties and char-
acteristics of vitamin D-binding protein. Trends Endocrinol. Metab.
11:320-327. https://doi.org/10.1016/S1043-2760(00)00317-9.

Winter, A., W. Kramer, F. A. O. Werner, S. Kollers, S. Kata, G. Durst-
ewitz, J. Buitkamp, J. E. Womack, G. Thaller, and R. Fries. 2002.

Journal of Dairy Science Vol. TBC No. TBC, TBC

Association of a lysine-232/alanine polymorphism in a bovine gene
encoding acyl-CoA:diacylglycerol acyltransferase (DGAT!) with
variation at a quantitative trait locus for milk fat content. Proc.
Natl. Acad. Sci. USA 99:9300-9305. https://doi.org/10.1073/pnas
.142293799.

Xie, C., X. Zhou, J. Wu, W. Chen, D. Ren, C. Zhong, Z. Meng, Y. Shi,
and J. Zhu. 2024. ZNF652 exerts a tumor suppressor role in lung
cancer by transcriptionally downregulating cyclin D3. Cell Death
Dis. 15:792. https://doi.org/10.1038/s41419-024-07197-1.

Zech, M., K. R. Kumar, S. Reining, J. Reunert, M. Tchan, L. G. Riley, A.
P. Drew, R. J. Adam, R. Berutti, S. Biskup, N. Derive, S. Bakhtiari,
S. C.Jin, M. C. Kruer, T. Bardakjian, P. Gonzalez-Alegre, 1. J. Keller
Sarmiento, N. E. Mencacci, S. J. Lubbe, M. A. Kurian, F. Clot, A.
Meéneret, J.-M. de Sainte Agathe, V. S. C. Fung, M. Vidailhet, M.
Baumann, T. Marquardt, J. Winkelmann, and S. Boesch. 2022. Bial-
lelic AOPEP loss-of-function variants cause progressive dystonia
with prominent limb involvement. Mov. Disord. 37:137-147. https:/
/doi.org/10.1002/mds.28804.

Zhang, J., R. Bonasio, F. Strino, Y. Kluger, J. K. Holloway, A. J. Mod-
zelewski, P. E. Cohen, and D. Reinberg. 2013. SFMBT1 functions
with LSD1 to regulate expression of canonical histone genes and
chromatin-related factors. Genes Dev. 27:749-766. https://doi.org/
10.1101/gad.210963.112.

Zou, Y., P. Carbonetto, G. Wang, and M. Stephens. 2022. Fine-mapping
from summary data with the “Sum of Single Effects” model. PLoS
Genet. 18:¢1010299. https://doi.org/10.1371/journal.pgen.1010299.

ORCIDS

Sajjad Toghiani,
John B. Cole,

https://orcid.org/0000-0002-5090-728X
https://orcid.org/0000-0003-1242-4401
Christian Maltecca, ® https://orcid.org/0000-0002-9996-4680
Li Ma, ® https://orcid.org/0000-0003-1038-1081
Jicai Jiang ® https://orcid.org/0000-0001-6890-7539


https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2015-10038
https://doi.org/10.3168/jds.2015-10038
https://doi.org/10.1186/1297-9686-43-10
https://doi.org/10.1186/s12711-017-0307-4
https://doi.org/10.1186/s12711-017-0307-4
https://doi.org/10.1534/genetics.105.046730
https://doi.org/10.3168/jds.2017-12954
https://doi.org/10.3168/jds.2017-12954
https://doi.org/10.3168/jds.2017-12879
https://doi.org/10.1016/j.livsci.2015.11.011
https://doi.org/10.1016/S1043-2760(00)00317-9
https://doi.org/10.1073/pnas.142293799
https://doi.org/10.1073/pnas.142293799
https://doi.org/10.1038/s41419-024-07197-1
https://doi.org/10.1002/mds.28804
https://doi.org/10.1002/mds.28804
https://doi.org/10.1101/gad.210963.112
https://doi.org/10.1101/gad.210963.112
https://doi.org/10.1371/journal.pgen.1010299
https://orcid.org/0000-0002-5090-728X
https://orcid.org/0000-0003-1242-4401
https://orcid.org/0000-0002-9996-4680
https://orcid.org/0000-0003-1038-1081
https://orcid.org/0000-0001-6890-7539

	Genome-wide association study and fine-mapping using imputed sequences to prioritize candidate genes for 30 complex traits in 50,309 Holstein bulls
	INTRODUCTION
	MATERIALS AND METHODS
	Phenotype Data
	Genotype Data
	GWAS
	Fine-Mapping

	RESULTS
	GWAS Optimization
	GWAS
	Fine-Mapping
	Candidate Genes

	DISCUSSION
	CONCLUSIONS
	NOTES
	REFERENCES




