
ABSTRACT

Identifying causal genetic variants underlying eco-
nomically important traits in dairy cattle is essential for 
understanding their genetic basis and optimizing breed-
ing programs. The growing availability of sequenced 
reference genomes and individuals with both phenotypic 
and genotypic data notably enhances our ability to de-
tect genetic associations and further pinpoint causal 
effects. This comprehensive GWAS of dairy cattle used 
deregressed breeding values as phenotypes and analyzed 
11,292,243 quality-controlled, imputed sequence vari-
ants from 50,309 Holstein bulls. The number of bulls 
with available phenotypes ranged from 23,121 to 50,309 
across 30 complex traits categorized into production 
and yield, type, and longevity and health. We performed 
GWAS using our SLEMM-GWA approach, which ac-
counts for the varying reliability of deregressed breeding 
values across individuals and demonstrates computational 
efficiency for large sample sizes and sequence data. This 
analysis identified 381 significant association peaks, of 
which 126 are novel findings. Subsequent Bayesian fine-
mapping provided statistical prioritization by assigning 
posterior conditional inclusion probabilities to individual 
variants and genes, yielding a list of credible candidate 
genes—an advancement over conventional GWAS re-
porting of all proximal genes. This prioritization offered 
direct statistical support for previously reported genes 

and, more importantly, identified credible candidate 
genes within the 126 newly discovered peaks for specific 
traits, including AOPEP, GC, E2F6, MGST1, VPS13B, 
ZNF652, ASPH, SFMBT1, and MAPRE2. These findings 
enhance the understanding of the genetic architecture of 
these complex dairy traits and provide valuable insights 
for the refinement of genomic selection strategies and 
breeding programs in Holstein cattle.
Key words: GWAS, fine-mapping, dairy cattle, candidate 
genes

INTRODUCTION

The genetic improvement of economically important 
traits in livestock represents a cornerstone of modern 
animal agriculture, yielding significant implications for 
production efficiency, animal welfare, and environmen-
tal sustainability. Over the past century, the spectrum of 
traits considered for genetic selection within dairy cattle 
populations has been expanded to address the evolving 
demands of both industry and society. Selective breed-
ing efforts in recent decades have resulted in significant 
advancements in traits such as milk production, body 
conformation, reproductive performance, and disease 
resistance (Miglior et al., 2017). The integration of ge-
nomic data into breeding programs has greatly improved 
the ability to make informed selection decisions, thereby 
accelerating genetic gains and improving the efficiency 
of breeding strategies (Meuwissen et al., 2001; Van-
Raden, 2008; García-Ruiz et al., 2016).

A comprehensive understanding of the genetic archi-
tecture underlying these traits provides significant ad-
vantages for selective breeding programs (Weller et al., 
2017). The identification of causal genes, such as DGAT1 
(Grisart et al., 2002; Winter et al., 2002) and ABCG2 
(Cohen-Zinder et al., 2005), has advanced our knowl-
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edge of complex traits and informed targeted breeding 
strategies. Within this framework, animal genotyping 
using SNP panels or whole-genome sequencing followed 
by GWAS has been presented as the gold standard ap-
proach to link phenotypes of interest to their underlying 
genetics in livestock species (Korte and Farlow, 2013). 
The GWAS have been widely used to identify genetic 
variants associated with complex traits, providing deeper 
insights into their genetic basis (McCarthy et al., 2008). 
Studies conducted in various dairy cattle breeds have 
identified numerous loci associated with dairy traits. As 
of release 55 (December 23, 2024), the Cattle QTLdb 
has compiled 192,336 QTL or associations covering 553 
different traits (Hu et al., 2022).

However, GWAS typically identify associations rather 
than causal variants, facing limitations in precisely pin-
pointing causal variants due to factors such as linkage 
disequilibrium and population structure (Stram, 2004; 
Goddard and Hayes, 2009). A conventional GWAS often 
yields numerous significant associations, complicating 
the prioritization of variants most likely to be causal. 
Furthermore, typical GWAS interpretation often relies on 
nominating candidate genes based simply on proximity to 
association peaks, which limits statistical confidence in 
identifying truly causal genes. These challenges impede a 
more granular understanding of the genetic mechanisms 
underlying the complex traits and hinder the effective 
application of these findings in breeding programs. For-
tunately, the increasing availability of high-density SNP 
chip genotyping and whole-genome sequencing data 
from larger cattle populations has substantially enhanced 
both statistical power and genomic coverage. This com-
bination provides a critical opportunity to move beyond 
identifying associations toward pinpointing causal vari-
ants through fine-mapping.

Fine-mapping offers a way to prioritize the causal vari-
ants underlying the associations identified by GWAS. 
Many fine-mapping methods have been developed, includ-
ing CAVIARBF (Chen et al., 2015), FINEMAP (Benner et 
al., 2016), and SuSiE (Zou et al., 2022). However, these 
methods are primarily designed for samples of unrelated 
individuals, and direct application to populations with ex-
tensive relatedness, common in livestock, can significant-
ly compromise fine-mapping power and precision (Wang 
et al., unpublished data, 2025). In dairy cattle, intensive 
use of artificial insemination and strong selection prac-
tices have resulted in populations characterized by strong, 
long-range linkage disequilibrium and large half-sib fami-
lies (de Roos et al., 2008; Kim and Kirkpatrick, 2009), 
requiring different approaches than those typically applied 
in human studies. We specifically developed BFMAP for 
samples of related individuals (Jiang et al., 2019a). The 
BFMAP applies a linear mixed model framework to ac-
count for the relatedness among individuals and polygenic 

effects, thereby improving the accuracy of causal variant 
identification in livestock populations.

The US dairy industry has been collecting and evalu-
ating economically important traits in dairy cattle for 
over a century, and the traits considered for genetic 
selection in dairy cattle populations have evolved to 
meet the demands of industry and market (Weigel et al., 
2017; Guinan et al., 2023). This large-scale collection 
of phenotypic records and genotype data for a series 
of key dairy traits, including production, conformation, 
and health (VanRaden, 2016), provides a unique oppor-
tunity to investigate the genetic basis of complex traits 
in dairy cattle.

In this study, we use GWAS and Bayesian fine-map-
ping to identify genetic associations and prioritize candi-
date variants and genes for 30 complex traits in Holstein 
cattle. By analyzing a large cohort of Holstein bulls (n 
= 50,309) with over 11 million quality-controlled, im-
puted sequence variants, the aim was to detect robust 
associations and identify causal genetic elements influ-
encing production, conformation, and health traits. These 
findings should provide valuable biological insights into 
these complex traits, thereby informing genetic improve-
ment strategies and enhancing the efficiency of breeding 
programs in the dairy industry.

MATERIALS AND METHODS

Phenotype Data

This study used data for 30 traits with sample sizes 
ranging from 23,121 to 50,309 Holstein bulls, accessed 
through the Council on Dairy Breeding (CDCB). The 
PTA derived from traditional evaluations were der-
egressed following VanRaden et al. (2009) to remove 
the contribution of parent information and reduce de-
pendence among animals. This deregression process 
generated a deregressed PTA and its corresponding 
reliability for each bull, which reflects the amount of 
information from its own records and progeny. For sub-
sequent analyses, these deregressed PTA were used as 
pseudophenotypes, and their reliabilities were used to 
derive error variance weights (VanRaden, 2008; Van-
Raden et al., 2011). The 30 traits were classified into 
3 categories: production and yield (PY), longevity and 
health (LH), and type (TY), with net merit treated as a 
distinct trait. Details on the number of Holstein bulls 
and the mean and SD of deregressed PTA reliabilities 
for each trait are provided in Table 1.

Genotype Data

Genotypes for the 50,309 Holstein bulls were origi-
nally obtained from various SNP arrays, encompassing 

Wang et al.: GWAS AND FINE-MAPPING IN HOLSTEIN BULLS



Journal of Dairy Science Vol. TBC No. TBC, TBC

over 50 different SNP panels validated by the CDCB 
(Bowie, MD) for genomic evaluations (ranging from 
low-density arrays with a few thousand SNPs to high-
density arrays with over 60,000 SNPs). These genotypes 
were then imputed to a common set of 78,965 SNPs to 
standardize the genomic data across diverse genotyping 
platforms. After position and allele matching, exclusion 
of sex chromosomes, and quality control procedures, 
~70,000 autosomal SNPs remained and were subse-
quently imputed to the whole-genome sequence level 
using IMPUTE5 (Rubinacci et al., 2020). This imputa-
tion leveraged a reference panel consisting of ~2,800 
bulls (including Holsteins and other breeds) from both 
Run8 and Run9 (European Nucleotide Archive acces-
sions PRJEB42783 and PRJEB56689, respectively) of 
the 1000 Bull Genomes Project (Hayes and Daetwyler, 
2019) and 491 dairy bulls (including 318 Holsteins) 
from the Cooperative Dairy DNA Repository(CDDR; 
Madison, WI). The sequence data from CDDR were 
provided to USDA-AGILand made available for this 
project with CDDR approval. Variants were retained if 
they had a minor allele frequency ≥0.01, satisfied Har-
dy-Weinberg equilibrium criteria at a P-value threshold 

≥1 × 10−9, and achieved an IMPUTE5 INFO score ≥0.8. 
Only biallelic SNPs on autosomes were retained, ex-
cluding sex chromosomal and mitochondrial variants. 
After quality control, 11,292,243 sequence variants 
remained for subsequent analyses, and variant positions 
were annotated based on the ARS-UCD1.2 genome as-
sembly (Rosen et al., 2020).

GWAS

A GWAS was performed using the SLEMM-GWA 
function in SLEMM v0.89.5 software (Cheng et al., 
2023; available at https:​/​/​github​.com/​jiang18/​slemm), 
which can model the varying reliability of pseudophe-
notypes (e.g., deregressed PTA) across individuals. The 
SLEMM-GWA uses the following linear mixed model:

y Xb z e= + + +j ja g  with�g g~ , 0 2Gσ( )  
and e R~ , 0 2σ e( ),

where y represents a vector of (pseudo-)phenotypes, b 
denotes a vector of nongenetic fixed effects (including 
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Table 1. Sample size (N) and reliability statistics (mean and SD) for deregressed PTA across 30 dairy traits in 
Holstein bulls

Trait name   Abbreviation   Group1 N

Reliability

Mean SD

Milk Yield   Milk   PY 50,309 0.793 0.186
Fat Yield   Fat   PY 50,309 0.785 0.191
Protein Yield   Protein   PY 50,308 0.774 0.189
Fat Percentage   Fat_Percent   PY 50,309 0.785 0.191
Protein Percentage   Pro_Percent   PY 50,308 0.774 0.189
Final Score   Final_score   TY 40,793 0.652 0.174
Stature   Stature   TY 40,839 0.841 0.085
Strength   Strength   TY 40,833 0.718 0.153
Dairy Form   Dairy_form   TY 40,562 0.714 0.152
Foot Angle   Foot_angle   TY 40,633 0.613 0.229
Rear Legs (Side View)   Rear_legs(side)   TY 40,837 0.742 0.140
Body Depth   Body_depth   TY 40,837 0.724 0.167
Rump Angle   Rump_angle   TY 40,837 0.819 0.096
Rump Width   Rump_width   TY 40,015 0.755 0.117
Fore Udder Attachment   Fore_udder_att   TY 40,838 0.758 0.126
Rear Udder Height   Rear_ud_height   TY 40,839 0.708 0.151
Rear Udder Width   Rear_ud_width   TY 40,831 0.616 0.224
Udder Depth   Udder_depth   TY 40,834 0.832 0.088
Udder Cleft   Udder_cleft   TY 40,799 0.663 0.198
Front Teat Placement   Front_teat_pla   TY 40,838 0.753 0.120
Teat Length   Teat_length   TY 40,824 0.813 0.092
Rear Legs (Rear View)   Rear_legs(rear)   TY 39,855 0.574 0.193
Feet and Legs   Feet_and_legs   TY 35,247 0.564 0.242
Rear Teat Placement   Rear_teat_pla   TY 39,670 0.770 0.107
Net Merit   Net_Merit   — 50,309 0.605 0.183
Productive Life   Prod_Life   LH 49,389 0.624 0.229
Somatic Cell Score   SCS   LH 50,193 0.714 0.223
Livability   Livability   LH 49,574 0.359 0.226
Calf Livability   Calf_Livability   LH 23,121 0.126 0.195
Gestation Length   Gestleng   LH 49,599 0.454 0.416
1Abbreviations for trait groups: PY = production and yield; TY = type; LH = longevity and health.

https://github.com/jiang18/slemm
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the intercept) with corresponding design matrix X, zj is a 
vector of genotypes for the j-th variant (coded as 0, 1, or 
2) with additive effect aj, g is a random-effect term ac-
counting for relatedness and polygenic effects, and e is a 
vector of residuals. Additionally, G is a genomic rela-
tionship matrix (GRM) constructed using the second 
method of VanRaden (2008). Also, R is a diagonal matrix 
modeling individual reliability, with diagonal elements 
set to 1 for directly measured phenotypes and for pseudo-
phenotypes computed as � / ,R rii i= −1 12  where ri 2 de-
notes the reliability of the i-th individual’s pseudopheno-
type. In this study, we used deregressed PTA as pseudo-
phenotypes and included only the intercept in fixed ef-
fects. For each variant j, a score test chi-squared statistic 
was computed to test the null hypothesis that aj = 0.

To optimize SNP selection for constructing the GRM, 
we compared GWAS results using GRM derived from 
different SNP sources and densities. Specifically, we 
evaluated the GRM built using the full ~70,000 autosomal 
chip SNPs, alongside GRM constructed from randomly 
selected subsets without replacement of 30,000, 50,000, 
and 70,000 SNPs drawn from the 11,292,243 quality-con-
trolled imputed sequence variants. Based on a comparison 
of genomic inflation factors and the number of significant 
associations, the GRM built using 70,000 randomly se-
lected sequence SNPs was chosen for subsequent analyses.

Genome-wide significant associations were initially 
declared using a genome-wide significance threshold of P 
< 5 × 10−8. Associated regions were defined around each 
significant peak, encompassing the contiguous genomic 
segment containing the cluster of significant SNPs. As-
sociation peaks were identified by visual inspection of 
the Manhattan plot for each trait. The boundaries of each 
associated region spanned from the position of the first 
to the last significant SNP within each visually identified 
cluster. For comparison with previously reported asso-
ciations, only regions containing at least 3 variants with 
P < 5 × 10−7 were retained to reduce potential false posi-
tives. To determine whether these associated regions had 
been previously reported, we cross-referenced our results 
against the Cattle QTLdb release 55 (Hu et al., 2022) and 
extracted traits with definitions closely matching the 30 
traits analyzed in our study (Supplemental Table S1, see 
Notes; Wang et al., 2025a). Additionally, we compared 
our findings with our previous GWAS results from Jiang 
et al. (2019a), a study that analyzed 35 traits in 27,214 
individuals (27 traits overlapping with this study) and 
whose results were not included in the Cattle QTLdb. 
Genomic coordinates from our previous study were con-
verted from UMD 3.1 to ARS-UCD 1.2 using liftOver 
(Kent et al., 2002), and peaks located on unplaced ge-
nomic scaffolds were excluded from comparison. A peak 
was considered consistent with existing findings if its 

associated region intersected with the genomic interval 
extending ±500 kb from a previously reported associa-
tion for the same trait in either the Cattle QTLdb or our 
previous study, whereas those falling outside this interval 
were classified as novel discoveries.

To broadly capture candidate regions for fine-mapping, 
we further identified associations using an inclusive 
significance threshold (P < 5 × 10−5). Significant SNPs 
were grouped into contiguous clusters to define initial 
candidate regions. Adjacent clusters spaced by less than 
5 Mb were merged, ensuring subsequent candidate re-
gions were at least 5 Mb apart to avoid redundancy. To 
reduce potential false positives, only regions containing 
at least 3 variants with P < 5 × 10−4 were retained for 
further analysis. For each retained region, we established 
initial minimal boundaries encompassing all constitu-
ent variants meeting the significance threshold (P < 5 
× 10−5). Following our previous procedure (Jiang et al., 
2019a), the region boundaries were then adjusted based 
on the position of the variant with the minimum P-value 
within that region. Specifically, the boundaries were ex-
tended outwards where necessary to ensure a minimum 
distance of 1 Mb both upstream and downstream from 
this minimum P-value variant’s position. This ensured 
each final candidate region spanned at least 2 Mb and 
was conceptually centered around the location of the 
minimum P-value variant, thereby increasing the likeli-
hood of including potential causal variant(s).

Fine-Mapping

To identify potential causal variants and candidate 
genes, each candidate region identified by GWAS was 
fine-mapped using the forward selection method in 
BFMAP v.0.65 (Jiang et al., 2019a). The BFMAP is 
a Bayesian fine-mapping software tool designed for 
samples of related individuals, such as livestock, and it 
employs a linear mixed model framework incorporating 
a GRM to account for polygenic effects or relatedness, 
or both. The forward selection procedure in BFMAP 
sequentially adds independent signals to the model, 
repositions them for refinement, and identifies variants 
related to each signal. It computes posterior conditional 
inclusion probability (PCIP) for each variant in a sig-
nal, which quantifies the probability of being included 
conditional on the other signals in the model. For each 
signal, BFMAP generates a credible set of variants, de-
fined as the smallest set whose cumulative PCIP reaches 
a specified confidence level. Detailed documentation 
and guidelines for BFMAP are available at https:​/​/​
github​.com/​jiang18/​bfmap. In our study, we set the con-
fidence level to 95%, thereby deriving a 95% credible 
set of variants for each signal. To reduce computational 
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burden for fine-mapping, only variants with a GWAS 
P < 0.05 were retained for each candidate region. The 
BFMAP was run separately for each candidate region. 
We also computed gene-level PCIP by aggregating the 
variant-level PCIP for all variants located within a gene, 
including its 3 kb upstream and downstream flanks to 
capture potential regulatory regions, based on gene lo-
cations extracted from Ensembl release112.

RESULTS

GWAS Optimization

To optimize the GWAS model, we compared results 
obtained using GRM constructed from the ~70,000 au-
tosomal chip SNPs and from random subsets of 30,000, 
50,000, and 70,000 SNPs from the imputed sequence 
data. For this comparison, we selected 3 representative 
traits: Milk (from the PY trait group), Livability (from 
the LH trait group), and Foot Angle (from the TY trait 
group). As illustrated in Supplemental Figure S1, see 
Notes (Wang et al., 2025a), GWAS using the GRM from 
~70,000 autosomal chip SNPs detected slightly fewer 
significant peaks at the P-value threshold of 5 × 10−5 
than GWAS using GRM from randomly selected imputed 
sequence SNPs. The number of significant peaks was 
similar across GWAS using the 3 GRM constructed from 
randomly selected sequence SNPs. We further evaluated 
the control of genomic inflation (λ) across these differ-
ent GRM constructions. As shown in Table 2, the GRM 
from ~70,000 autosomal chip SNPs resulted in deflated λ 
values for all 3 traits (λ < 0.95), whereas the GRM from 
30,000 randomly selected sequence SNPs produced an in-
flated λ for Foot Angle (λ > 1.05). While the difference in 
λ values between GRM from 50,000 and 70,000 randomly 
selected sequence SNPs was minimal, the latter produced 
λ values marginally closer to the ideal value of 1.0 for 
all 3 representative traits. Based on these comparisons, 

we chose to use the 70,000 randomly selected SNPs from 
the imputed sequence data to construct the GRM that was 
applied consistently across all traits in all subsequent 
analyses to ensure methodological consistency.

Additionally, we assessed the effect of incorporating 
reliability into our GWAS by comparing 2 models: one 
with a reliability-weighted residual term 
� / ,R rii i= −( )1 12  and one with an identity residual 
term (R = I). Accounting for reliability allowed us to 
down-weight pseudophenotypes with lower accuracy, 
potentially reducing statistical noise. Log-likelihood 
values in Supplemental Table S2 (see Notes; Wang et 
al., 2025a) demonstrate substantially improved model 
fitting when incorporating reliability information. For 
Milk Yield (Figure 1A vs. 1B), a trait characterized by a 
high mean (0.793) and low variation (SD = 0.186) in 
reliability, the overall association pattern remained 
largely consistent between the 2 models, with slight dif-
ferences in peak prominence. In contrast, for Foot Angle 
(Figure 1C vs. 1D), which exhibits an intermediate 
mean and higher variation in reliability (mean = 0.613, 
SD = 0.229), modeling reliability enhanced the signifi-
cance of association peaks. The effect was most notable 
for Livability (Figure 1E vs. 1F), which has a substan-
tially lower mean (0.359) and high variation (SD = 
0.226) in reliability. Without modeling reliability, no 
signals exceeded the genome-wide significance thresh-
old (5 × 10−8); however, the GWAS incorporating reli-
ability identified 9 peaks. Therefore, we incorporated 
reliability for all 30 complex traits in subsequent GWAS 
analyses to optimize model performance.

GWAS

We conducted GWAS for 30 complex traits in 50,309 
Holstein bulls using the optimized model, with sample 
sizes for individual traits ranging from 23,121 to 50,309. 
These bulls possess extensive daughter records, with 
deregressed PTA reliability ranging from 0.126 for Calf 
Livability (a typical low-h2 trait) to 0.841 for Stature (a 
typical high-h2 trait; Table 1). Our mixed model GWAS 
approach effectively controlled population structure and 
familial relatedness, as indicated by genomic control 
factors (λ) smaller than 1.03 for all the 30 traits (Supple-
mental Table S3, see Notes; Wang et al., 2025a). The 
GWAS Manhattan plots for the 30 traits are provided in 
Supplemental Figure S2 (see Notes; Wang et al., 2025a), 
showing readily identifiable association peaks. Using 
a genome-wide significance threshold of P < 5 × 10−8, 
381 significant peaks were identified for the 30 complex 
traits. Significant peak counts varied by trait, ranging 
from 0 for Calf Livability to 28 for Protein Percentage 
(Supplemental Table S4, see Notes; Wang et al., 2025a).

Wang et al.: GWAS AND FINE-MAPPING IN HOLSTEIN BULLS

Table 2. Genomic inflation factor (λ) and number of peaks identified 
using GRM constructed with different SNP sets across 3 representative 
traits1

Trait   Parameter Seq 30,000 Seq 50,000 Seq 70,000 Chip 70,000

Milk   λ 0.905 0.821 0.833 0.825
  No. of peaks 14 13 12 12

Foot Angle   λ 1.093 1.006 1.002 0.923
  No. of peaks 8 7 8 3

Livability   λ 0.999 0.952 0.955 0.922
  No. of peaks 8 8 9 6

1GRM were constructed using SNPs randomly selected from imputed se-
quence data (Seq) at different densities (30,000, 50,000, 70,000) or using 
~70,000 autosomal chip SNPs. Reliability was incorporated in the model. 
Number of peaks defined using genome-wide significance threshold of P 
< 5 × 10−8 and identified by visualization.
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Comparison with existing studies revealed that of 
the 381 significant peaks identified in this study, our 
analysis newly identified 126 peaks (33%) that have not 
been previously reported in the Cattle QTLdb or our 
earlier work (Figure2; Jiang et al., 2019a). The remain-
ing 255 peaks (67%) had been previously documented, 
with 250 of these specifically reported in Holstein 
cattle (Supplemental Table S5, see Notes; Wang et al., 
2025a). No novel peaks were identified for PY traits in 
this study. In contrast, we discovered 97 and 21 novel 
significant peaks for TY and LH traits, respectively. 
The remaining 8 novel peaks were associated with 
Net Merit. Furthermore, compared with our previous 
study using data from ~27k Holstein bulls (Jiang et al., 
2019a), the increased scale in the present analysis led to 

the discovery of 206 additional peaks, 80 of which had 
been previously documented in the Cattle QTLdb. Only 
47 peaks from our previous study were not replicated at 
the genome-wide significance threshold (P < 5 × 10−8) 
in the current study, with 11 of these not replicated at 
the more lenient threshold (P < 5 × 10−5), likely due 
to sample changes and methodological differences in 
imputation and association procedures.

Fine-Mapping

The fine-mapping process using BFMAP involved 
identifying independent signals within each candidate 
region, computing PCIP for variants within these sig-
nals, and generating a 95% credible variant set for each 

Wang et al.: GWAS AND FINE-MAPPING IN HOLSTEIN BULLS

Figure 1. Comparison of GWAS results with (right panels B, D, and F) and without (left panels A, C, and E) modeling reliability for Milk Yield, 
Foot Angle, and Livability. The red and blue horizontal lines represent genome-wide significance thresholds of 5 × 10−8 and 5 × 10−5, respectively. 
For Milk Yield (A and B), the y-axis is truncated at −log10(P) = 50 for better visualization of secondary peaks; the strongest signal on chromosome 
14, reaches a −log10(P) value exceeding 250.
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independent signal. Applying this process to the 2,113 
candidate regions (identified by the inclusive GWAS 
significance threshold of P < 5 × 10−5) yielded 4,023 
independent signals (Supplemental Tables S6–S8, see 
Notes; Wang et al., 2025a). We further filtered these 
signals using a fine-mapping P-value threshold of <5 × 
10−8, resulting in 792 high-confidence signals (Supple-
mental Table S4; Wang et al., 2025a). Among these sig-
nals, 376 SNP-trait pairs exhibited a PCIP >0.5, and 174 
pairs had a PCIP >0.9, representing high-confidence 
candidate variants.

Candidate Genes

For each of the independent fine-mapped signals 
where the signal’s lead variant fine-mapping P-value was 
<5 × 10−5, we computed gene-level PCIP by aggregating 
variant PCIP for all variants within each associated gene 
(including 3 kb upstream/downstream flanks based on 
Ensembl locations) signals (Supplemental Table S9, see 
Notes; Wang et al., 2025a). This analysis yielded 2,038 
gene-trait pairs with a gene-level PCIP >0.5.

To identify the most promising candidate genes, 
stringent filtering criteria were applied: a gene-level 

PCIP of >0.8 and, for the associated signal’s lead vari-
ant, a fine-mapping P-value of <5 × 10−8. This selection 
yielded a focused list of 229 unique candidate genes 
(Table 3), including several well-studied or repeatedly 
reported genes in cattle such as DGAT1, ABCG2, GHR, 
GPIHBP1, ZNF623, ZC3H3, PLEC, and HSF1 (Arranz 
et al., 1998; Grisart et al., 2002; Cohen-Zinder et al., 
2005; Viitala et al., 2006) for PY traits; ABCC9, CCND2, 
ARRDC3, TMTC2, and IGF2 for TY traits (Saatchi et al., 
2014; Weng et al., 2016; Seabury et al., 2017; Ghore-
ishifar et al., 2020; Cai et al., 2023a; Gualdrón Duarte 
et al., 2023; Schmidtmann et al., 2023); and BTBD9 for 
LH traits (Cai et al., 2023b). Notably, 9 candidate genes 
were identified within the newly discovered peaks for 
specific traits: AOPEP (Fore Udder Attachment), GC 
(Livability), E2F6 (Livability), MGST1 (Net Merit), 
VPS13B (Rear Udder Height), ZNF652 (Rump Angle), 
ASPH (Rump Width), SFMBT1 (Rump Width), and MA-
PRE2 (Teat Length). While these stringent criteria were 
applied for the prioritized candidate genes presented 
herein, less restrictive standards could also be applied 
to identify additional candidate genes with potentially 
weaker statistical evidence. The complete list is avail-
able in Supplemental Table S9 (Wang et al., 2025a).
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Figure 2. Comparison of peaks identified using a genome-wide significance threshold (P < 5 × 10−8) with previously reported associations across 
29 traits. Calf Livability was excluded because no associations passed this threshold. Bars represent the total number of significant peaks, subdivided 
into 4 categories based on reporting status: (blue) reported in Cattle QTLdb for Holstein (alone or with other breeds); (orange) reported in Cattle 
QTLdb for non-Holstein breeds only; (gray) identified in our previous study (Jianget al., 2019) but absent from Cattle QTLdb; and (green) newly 
discovered in this study.
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DISCUSSION

In this study, we performed GWAS on a large cohort 
of 50,309 Holstein bulls using imputed sequence data 
comprising 11,292,243 quality-controlled variants and 
subsequently applied Bayesian fine-mapping to iden-
tify causal variants and genes underlying 30 complex 

traits. This large-scale analysis significantly enhanced 
statistical power for detecting genetic associations and 
improved the precision of fine-mapping in identify-
ing causal variants. The absence of novel peaks for PY 
traits is likely due to extensive prior research on these 
economically critical traits, while numerous novel peaks 
were discovered for TY and LH traits, which have his-
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Table 3. Highly credible candidate genes meeting stringent criteria (gene-level PCIP >0.8 and lead variant P-value <5 × 10−8)

Trait   Candidate genes (posterior conditional inclusion probability [PCIP])

Milk Yield   ABCC9 (0.96), ABCG2 (1.00), ACO2 (0.92), ARHGAP39 (0.97), COX6C (0.81), DGAT1 (0.80), GHR (0.96), GNAT3 (0.98), 
KCNK3 (0.95), KIAA0930 (0.93), LPO (0.94), LRP5 (0.96), RECQL (1.00), SLC4A4 (0.99), SMPD5 (0.93), SPATC1 (0.93), 
VPS13B (0.97)

Fat Yield   DGAT1 (1.00), ENSBTAG00000004596 (1.00), ENSBTAG00000049400 (1.00), FANCC (0.95), FASN (0.97), GPIHBP1 
(0.86), HSF1 (1.00), IGF2 (0.99), MGST1 (0.97), PLEC (1.00), ST3GAL4 (0.93), ZC3H3 (0.82)

Protein Yield   ASTN1 (0.95), C19H17orf49 (0.96), CUX2 (1.00), ENSBTAG00000048091 (0.91), FAM13A (0.96), FANCC (0.96), GCK 
(0.95), KCNN3 (0.96), RECQL (0.97), TBC1D32 (0.98), bta-mir-195 (0.96), bta-mir-497 (0.96)

Fat Percentage   ABCG2 (1.00), ADGRB1 (1.00), ARHGAP39 (1.00), COX6C (0.98), ENSBTAG00000049400 (0.95), EPPK1 (0.98), EPS8 
(0.95), GHR (1.00), GPIHBP1 (0.97), KCNK3 (0.92), MGST1 (0.99), PLEC (1.00), PUF60 (1.00), RNF217 (0.95), SCRIB 
(1.00), TRAPPC9 (0.97), VPS13B (0.98), ZC3H3 (0.98), ZNF623 (0.98), bta-mir-2285be (0.91)

Protein Percentage   ABO (0.95), ADCY6 (1.00), C6 (0.98), CAPN1 (1.00), COX6C (1.00), CYHR1 (1.00), DGAT1 (1.00), EFNA1 (0.99), GHR 
(1.00), GMDS (0.96), GPIHBP1 (1.00), HERC3 (1.00), HSD11B1 (0.99), HSF1 (1.00), IRF6 (0.95), JAK2 (0.84), MEPE 
(0.99), NNT (1.00), PAIP1 (1.00), PKD2 (1.00), PLEC (0.95), POP1 (0.84), RAVER2 (1.00), RNF217 (0.96), RNF43 (1.00), 
SLC35B4 (0.95), SMIM13 (1.00), SPX (1.00), TAF6L (0.94), TBC1D22A (1.00), TRIM46 (0.98), VPS13B (1.00), WNT10B 
(1.00), ZNF250 (0.95), ZNF623 (0.83)

Final Score   ATAD2 (0.87), CDYL2 (0.95), ENSBTAG00000054384 (0.96), RDH8 (0.94), TAFA1 (0.95)
Stature   CCND2 (0.95), CPEB3 (0.96), DIS3L2 (0.95), ENSBTAG00000054384 (0.96), ERICH4 (0.96), ESR1 (0.96), FSTL1 (0.98), 

KMT5B (0.99), LHPP (0.96), NCOR2 (0.82), NPM1 (1.00), NRTN (1.00), RABEP1 (0.83), RBFOX3 (1.00), RNASEH2B 
(0.96), TMCO4 (0.94), TTC32 (1.00)

Strength   ABCC9 (0.97), ARRDC3 (1.00), CCND2 (0.88), DHX34 (1.00), ENSBTAG00000004608 (0.84), ENSBTAG00000039491 
(0.97), KCNK9 (0.85), PHF19 (0.80), ST3GAL1 (0.96)

Dairy Form   ABCC9 (0.96), GC (0.85), NREP (1.00)
Foot Angle   DSC3 (0.87), STAG3 (0.93), TNNI2 (0.90)
Rear Legs (Side View)   DNMT3A (0.93), MYO1D (1.00), SSH2 (0.82), TSPAN9 (0.96)
Body Depth   ARRDC3 (1.00), CCND2 (0.96), CHSY3 (1.00), ENSBTAG00000004608 (0.94), GHRH (0.93), IGF1 (0.90)
Rump Angle   ABCA5 (0.94), CDH4 (0.98), COLEC12 (0.97), ENSBTAG00000052955 (0.98), FBN1 (0.96), LIPE (0.98), MPP7 (0.95), 

NAV3 (0.95), ZNF6521 (0.95)
Rump Width   CCDC77 (0.80), CCND2 (0.96), DNAI2 (0.95), GPRC5C (0.95), ZNF677 (0.96), ASPH* (0.96), SFMBT1* (0.95)
Fore Udder Attachment   ABCC9 (0.99), ARRDC3 (1.00), ENSBTAG00000053615 (0.95), NFATC2 (0.95), RUNX1 (0.99), SOX5 (0.95), WDR88 

(0.97), AOPEP1 (0.92)
Rear Udder Height   ARRDC3 (0.99), CLIP2 (1.00), KCNMA1 (0.95), KLHL29 (0.99), ODAD2 (0.95), PRRX1 (1.00), SLC24A3 (0.95), ZNF423 

(1.00), VPS13B1 (0.84),
Rear Udder Width   ARID5B (0.99), ENSBTAG00000054109 (0.80), RIMS1 (0.95), TMTC2 (0.94)
Udder Depth   ABCC9 (0.97), ARID4B (0.96), ARRDC3 (1.00), CHD3 (0.88), DOCK1 (1.00), ENSBTAG00000044837 (0.88), 

ENSBTAG00000050669 (0.95), ENSBTAG00000053793 (1.00), ENSBTAG00000054384 (0.98), ESR1 (0.95), FANCC 
(0.96), FDFT1 (0.96), FOXP1 (0.95), GC (0.96), IGF2 (1.00), KIAA0930 (0.99), LRP5 (1.00), LSM14A (0.92), SEC23IP 
(0.95), SHANK2 (0.97)

Udder Cleft   EIF3A (1.00), ENSBTAG00000043641 (1.00), ENSBTAG00000049502 (0.95), IQCA1L (0.89), SNORA19 (1.00), TAFA4 
(0.95), TSHZ3 (0.96), ZMIZ1 (0.95)

Front Teat Placement   AKAP8L (0.85), TMTC2 (0.95)
Teat Length   AKAP10 (0.96), AOPEP (0.95), ARRDC3 (0.81), CARS1 (0.87), CPED1 (0.89), DEPDC5 (1.00), JCAD (0.96), PHF12 

(0.90), PRKCZ (0.91), SFXN5 (0.87), SLC35D2 (0.95), TMTC2 (1.00), WNT7A (0.96), MAPRE2*(0.95)
Rear Legs (Rear View)   CALCOCO2 (1.00)
Rear Teat Placement   ACTN1 (0.95), ADAM12 (0.96), CHN1 (0.97), IRX2 (0.99), LMF1 (0.89), SUSD6 (0.95), VPS13B (0.96)
Net Merit   AGTR1 (0.95), ARRDC3 (0.99), CAPN7 (0.95), ENSBTAG00000048639 (0.95), EXOC2 (0.92), OLFM1 (0.99), OTOGL 

(0.85), PLEC (1.00), TBX2 (0.83), MGST11 (0.95)
Productive Life   ABCC9 (0.95), BTBD9 (0.96), CHST8 (1.00), DYRK4 (0.95), ERCC2 (0.96), FRMD5 (0.96), GC (0.96), HELB (0.95), KLC3 

(0.96), MFSD14B (1.00), SEMA4D (0.89), bta-mir-2285cr-2 (0.95)
SCS   APCDD1L (0.97), CMIP (0.97), CTIF (0.95), ENSBTAG00000055157 (0.92), INHCA (0.97), LARS2 (1.00), MTSS1 (1.00), 

NPNT (0.96), ROCK2 (0.97), SEPTIN9 (0.95), SLC7A9 (0.94)
Livability   BTBD9 (0.91), ENSBTAG00000004608 (0.96), ENSBTAG00000049494 (0.96), LDHB (0.99), MGC137454 (0.97), PDE4B 

(0.97), TRIP11 (0.91), E2F61 (0.85), GC1 (0.97)
Gestation Length   ADAMTS2 (1.00), AKT1 (1.00), BCO1 (0.91), CFAP61 (0.87), CHD3 (1.00), CMIP (0.95), ENSBTAG00000044837 (1.00), 

ENSBTAG00000051766 (0.98), GPS1 (0.97), HNRNPH1 (0.88), KDM7A (0.99), MGC137454 (0.90), NDFIP1 (1.00), 
SIVA1 (1.00), TRAM2 (1.00), ZNF532 (0.90)

1Denotes candidate genes within newly reported peaks in the current study.
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torically received less research attention. Our GWAS 
optimization revealed important considerations for con-
ducting association studies in dairy cattle populations. 
The GRM construction analysis demonstrated that using 
SNPs from genomic evaluation-centric chip panels can 
lead to deflated association statistics, likely due to the 
ascertainment bias of these markers toward large-effect 
loci for economic traits (VanRaden et al., 2017). As 
demonstrated by our findings, a randomly selected SNP 
subset from imputed sequence data of an appropriate size 
offered a better balance between maintaining statistical 
power and controlling genomic inflation in test statistics.

A key aspect of our GWAS model was the incorporation 
of deregressed PTA reliability into the residual term. By 
weighting residuals inversely by reliability, pseudophe-
notypes with lower accuracy exert less influence on the 
association statistics. The effect of modeling reliability 
varied with trait characteristics, specifically the variation 
in reliability among individuals. While traits exhibiting 
low variance in reliability across animals (often those 
with universally high reliability) showed minimal differ-
ences in association patterns between the 2 models, traits 
with higher variance in reliability (where individuals 
differ substantially in PTA accuracy) demonstrated sub-
stantial improvements in peak detection when reliability 
was incorporated. Incorporating reliability into GWAS 
improved model fitting and increased statistical power. 
These findings underscore the necessity of modeling reli-
ability in GWAS when deregressed PTA serve as pseudo-
phenotypes, particularly for traits where individual PTA 
reliabilities vary considerably, such as in analyses that 
include both bulls and cows.

Most existing fine-mapping methods (Chen et al., 
2015; Benner et al., 2016; Zou et al., 2022) are based 
on linear regression, which assumes samples are largely 
unrelated. This assumption is suitable for human data-
sets, and the linear regression framework simplifies 
the utilization of summary statistics for fine-mapping. 
These methods have often been used in farm animal 
fine-mapping studies (Li et al., 2020; Gualdrón Duarte 
et al., 2023; Qiu et al., 2024); unfortunately, such use 
violates the assumption in livestock populations where 
individuals are generally closely related, which can lead 
to poor fine-mapping performance, as demonstrated in 
our other study (Wang et al., 2025b). To address this lim-
itation, the current study employed BFMAP, which uses 
a linear mixed model framework that accounts for the 
relatedness among individuals. Our analysis produced a 
comprehensive list of candidate variants and genes that 
serve as promising targets for future functional valida-
tion studies. In contrast to most conventional GWAS, 
which typically reported associated SNPs or genes near 
a peak without formal statistical prioritization, our study 
offers a systematic prioritization derived from Bayesian 

fine-mapping, yielding statistically supported candidate 
variants and genes.

Traditional GWAS in farm animals typically nominate 
candidate genes by proximity to the lead SNP, without 
statistical prioritization of causality (Iung et al., 2019; 
Jiang et al., 2019b; Gao et al., 2023). This strategy typi-
cally yields broad candidate lists, which can hinder ef-
ficient functional follow-up investigations. In contrast, 
our fine-mapping strategy substantially narrows down 
this range by providing direct statistical evidence for 
candidate variants and genes. For example, MGST1 
(Chr5:​93​,497​,064​-93​,521​,047) has been repeatedly re-
ported to be associated with milk composition traits, but 
conventional GWAS would report it alongside numerous 
neighboring genes (Cai et al., 2020; Teng et al., 2023). 
Our study provides direct statistical evidence through 
gene prioritization showing that MGST1 emerges as the 
most credible candidate gene (PCIP = 0.99 for Fat Per-
cent) in this genomic region. By calculating gene-level 
PCIP, a direct probabilistic link to genes was established, 
effectively transitioning from variant-level evidence to 
gene-level inferences. Our previous simulation analy-
sis indicated that accurately fine-mapping individual 
causal variants in farm animals remains challenging in 
maintaining a low false discovery rate while preserv-
ing statistical power, largely due to the strong linkage 
disequilibrium. Gene-level analysis, however, achieves 
a more favorable balance between power and precision, 
making it a more robust approach for causal inference 
in farm animal populations (Wang et al., 2025b). The 
stringent criteria employed herein (gene-level PCIP 
>0.8 and lead variant P-value <5 × 10−8) facilitated the 
prioritization of the candidate genes with strong statisti-
cal support, resulting in a narrow set of high-confidence 
candidate genes rather than the typically extensive lists 
generated by proximity-based approaches. Despite our 
GWAS detecting 126 novel peaks, only 9 novel genes 
met our stringent criteria, indicating that many newly 
discovered loci exhibit weaker signals that do not firmly 
establish causal relationships. It is worth noting that the 
criteria used to select candidate genes were not intended 
as an absolute gold standard but rather as a conservative 
approach to minimize false positives. Employing more 
lenient criteria could potentially identify additional can-
didate genes with weaker evidence, offering a broader 
scope for further investigation.

The 9 novel candidate genes identified through our 
stringent fine-mapping approach represent newly identi-
fied candidate genes for their respective traits and warrant 
further investigation for their roles in dairy traits. Amino-
peptidase O (AOPEP), a candidate gene for Fore Udder 
Attachment, encodes a zinc-dependent metallopeptidase, 
and specific pathogenic biallelic loss-of-function vari-
ants in this gene cause autosomal recessive dystonia in 

Wang et al.: GWAS AND FINE-MAPPING IN HOLSTEIN BULLS



Journal of Dairy Science Vol. TBC No. TBC, TBC

humans (Garavaglia et al., 2022; Zech et al., 2022). Vacu-
olar protein sorting 13 homolog B (VPS13B), identified as 
a candidate gene for Rear Udder Height, encodes a large 
transmembrane protein involved in vesicular trafficking. 
In humans, pathogenic mutations of this gene cause Co-
hen syndrome (Duplomb et al., 2019; Momtazmanesh et 
al., 2020), and in mice, Vps13b knockouts cause male 
infertility through Golgi disruption (Nagata et al., 2018). 
Our study also identified this gene as the candidate gene 
for milk production traits, suggesting pleiotropic effects 
or involvement in related functional pathways influenc-
ing these traits in dairy cattle. Microsomal glutathione 
S-transferase 1 (MGST1) was identified in our study as 
a candidate gene for Fat Yield, Fat Percentage, and Net 
Merit. It was detected in a newly identified peak for Net 
Merit, suggesting the economic significance of this gene 
in dairy cattle breeding programs. Vitamin D binding 
protein (GC) and E2F transcription factor 6 (E2F6) were 
prioritized for Livability. The GC gene encodes the vita-
min D binding protein involved in vitamin D transport 
and immune function (White and Cooke, 2000). While 
previous fine-mapping studies have implicated GC as a 
candidate gene for clinical mastitis resistance in cattle 
(Olsen et al., 2016; Freebern et al., 2020; Lee et al., 
2021), our study provides statistical evidence supporting 
GC as a novel candidate gene for Livability. The E2F6 
gene encodes a transcriptional repressor. Mice lacking 
E2f6 exhibit homeotic axial skeletal transformations and 
testicular histological abnormalities but retain fertility 
(Storre et al., 2002). Zinc finger protein 652 (ZNF652), 
candidate gene for Rump Angle, encodes a C2H2-type 
zinc finger transcriptional repressor that regulates gene 
networks in cell differentiation (Kumar et al., 2010) 
and functions as a tumor suppressor in human lung ad-
enocarcinoma by arresting cells in G1 and thus reducing 
cell proliferation (Xie et al., 2024). For Rump Width, 
2 genes, aspartate β-hydroxylase (ASPH) and scm like 
with 4 mbt domains 1 (SFMBT1), were prioritized. The 
SFMBT1 gene encodes a chromatin-binding repressor 
that partners with histone-modifying enzymes to silence 
key histone genes, regulate myogenic differentiation, and 
function during spermatogenesis (Lin et al., 2013; Zhang 
et al., 2013). The ASPH gene encodes an enzyme in the 
endoplasmic reticulum that modifies calcium-binding 
proteins to help cells maintain proper calcium balance. 
Pathogenic ASPH mutations in humans cause Traboulsi 
syndrome, which features lens dislocation and facial 
dysmorphism (Pfeffer et al., 2019; Jones et al., 2022). 
Microtubule-associated protein RP/EB family member 2 
(MAPRE2), a candidate gene for Teat Length, encodes 
a conserved microtubule plus-end tracking protein that 
stabilizes spindle microtubules during oocyte meiosis. 
In mouse oocytes, knockdown of Mapre2 using siRNA-
disrupts kinetochore-microtubule attachments, activates 

the spindle-assembly checkpoint, and prevents first polar 
body extrusion (Li et al., 2022).

While this study benefited from a large sample size and 
sequence-level variant data, certain limitations should be 
acknowledged. First, our analysis focused exclusively 
on quality-controlled, imputed biallelic SNPs. Conse-
quently, we did not investigate the potential contribu-
tions of other important classes of genetic variation, such 
as multiallelic SNPs, insertions-deletions (indels), and 
larger structural variants, which may also influence the 
complex traits studied and warrant investigation in future 
research. Second, while imputation enables genome-wide 
coverage, the accuracy of imputed genotypes may vary, 
particularly for lower-frequency variants or variants 
located in regions with complex linkage disequilibrium 
patterns or limited coverage in the reference panel. This 
inherent uncertainty associated with imputation could 
potentially influence the precision of fine-mapping re-
sults, potentially affecting the definitive identification of 
causal variants or the exact composition of credible sets. 
Acknowledging these limitations is crucial for interpret-
ing and contextualizing the study’s findings accurately.

CONCLUSIONS

Our study underscores the necessity of optimizing 
GRM construction and incorporating reliability informa-
tion in GWAS using deregressed PTA, particularly for 
traits with high variation in reliability across individu-
als. By leveraging a large cohort of Holstein bulls and 
imputed sequence data, our comprehensive GWAS and 
Bayesian fine-mapping analysis identified many novel 
associations and prioritized candidate variants and genes 
for 30 complex traits in dairy cattle. These findings pro-
vide new insights into the genetic architecture of produc-
tion, conformation, and health traits in dairy cattle and 
serve as a valuable resource for further functional valida-
tion and enhancement of breeding strategies to improve 
dairy productivity and health.
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