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Abstract: Dairy cattle milking test plans in the United States and globally have evolved substantially since the 1960s toward cost-effective
sampling methods. Test-day recording frequencies vary, adapting to the specific management needs of different herds. Typically, a cow is
milked twice or more daily; however, milk fat and protein percentages are commonly assessed from single-milking samples. In this paper,
we introduced intraclass correlation coefficients to determine the consistency of intraday milk fat and protein percentages across multiple
milkings within the same cow. This metric extends beyond simple pairwise correlations, enabling robust comparisons across multiple
milkings. Various forms of intraclass correlations are also demonstrated. Our results show that although protein percentages exhibit high
consistency, fat percentages display notable variability throughout the test day. Hence, adjustment factors for milk fat percentage should
differ according to individual milkings and consider the effects of the milking interval, DIM, and parity. Overall, the results demonstrate
the utility of intraclass correlation as a consistency measure, providing a valuable tool for assessing the data quality of milk components

for dairy breeding and management decisions.

Milking test plans have substantially transformed toward cost-
efficient milk sampling strategies since the 1960s in the Unit-
ed States and other countries, mainly to minimize costs associated
with DHIA supervisor visits (Wu et al., 2023a). The frequency of
test-day recordings varies, adapting to various herd management
strategies. Typically, a cow is milked twice or more daily, yet not
all milkings are weighed and sampled. Fat and protein percentages
are often assessed on single-milking samples, and adjustments are
made assuming stable milk compositions across multiple milkings
daily.

Two metrics are relevant to guide data quality control: reliabil-
ity and accuracy. The former assesses the consistency of multiple
measurements, indicating whether results are reproducible under
the same conditions. The latter reflects how closely fat and protein
percentages from a single milking align with those derived from
the whole daily milk yields. Statistically, precision is synonymous
with reliability, measuring random errors, whereas accuracy is in-
terchangeably used with validity, measuring systematic error or the
closeness of measurements to the “true” values. In this study, we
propose using the intraclass correlation coefficient (ICC; Bartko,
1966) as a consistency measure for single-milking fat and protein
percentages and apply it to accessing the data quality of milk com-
ponents in 4 selected dairy farms.

Intraclass correlation is not new, and human and animal geneti-
cists have used ICC for decades in genetics studies. The degree of
resemblance between family relatives enables the estimation of

additive genetic variance, with the proportionate of additive vari-
ance (heritability) serving as a primary determinant of optimal
breeding methods for genetic improvement (Falconer and Mackay,
1996). By employing ANOVA, the total observed variance can be
partitioned into between-family and within-family variances. The
between-family component reflects the variance of the groups’
“true” means relative to the population mean, whereas the within-
family component captures the variance of individuals around their
family’s true mean. Consequently, the degree of resemblance can
be expressed by the between-family component as a proportion of
the total variance, corresponding to the ICC for families. Interclass
correlation also approximates repeatability without distinguishing
additive genetic effects from permanent environmental impact, as-
suming fat (protein) percentage is the same trait across multiple
milkings (Falconer and Mackay, 1996).

Fisher (1954) first introduced the ICC as a modification of the
Pearson correlation coefficient. To apply it in evaluating the con-
sistency of multiple measurements from different milkings, con-
sider n cows, each assessed for fat (or protein) percentage during
3 milkings daily on a test day. The intraclass correlation is defined
as:
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ranges from O to 1, with a high value indicating strong consistency
and a low value suggesting significant variation across multiple
milkings. Fisher (1954) also proposed assessing the sampling er-
rors of ICC by employing a logarithm transformation of a rational
function of ICC for cases with £ > 2 groups. In this study, we esti-
mated ICC sampling errors using bootstrapping.

The number of cross-products in this expression grows as the
number of milkings (k) increases, leading to substantially in-
creased computation with equation (1). Attributed to Harris (1913),
an alternative equivalent form of ICC, yet simpler, is the following:

r=—"x : - 2]

_ 1k . . .
where T, = Ezjzlxij' For a large £, this ICC is approximately

equal to

pa izl ) [3]

Modern ICC is calculated by mean squares based on ANOVA
(Shrout and Fleiss, 1979). Equation [3] can also be interpreted as
the fraction of the total variance due to variation between groups.
Modeling strategies vary; a one-way ANOVA model assumes
random effects only for the subjects (i.e., cows), whereas a 2-way
ANOVA model can account for both subjects and raters (i.e., milk-
ings) as sources of variability. Consider a one-way ANOVA model.
Suppose we have a set of measurements y;;, where i = 1, 2,...n is
the number of cows, and j = 1, 2,...k is the number of repeated
measurements daily for each cow. Assume equal true values across
multiple measurements per cow (a;). The observed measurement
y;; can be modeled as

yy=utatwg (4]

Here, a; is defined as the difference from the overall mean (x) of
the true value associated with the ith animal, assumed to be nor-

mally distributed with a zero mean and variance 02, and wy is a
residual term, also assumed to be normal with a zero mean and
variance O’i. The ICC under this scenario is computed as follows:
2
o _
1CC1 — e _ BMS — WMS .
o2 +0°  BMS+(k—1)WMS

(5]

The one-way ANOVA model estimates between-subject mean
square (BMS) and within-subject mean square (WMS), which are

then used to O'Z and Ui}.. When 0'12“ is small, ICC1 approaches 1,
indicating high measurement consistency. When 0'12” is large, ICC1

approaches 0, suggesting low consistency among single intraday
measurements per Cow.

The 2-way ANOVA model separates the effects in w; due to
multiple measurements b;, the interaction between measurements
and animals (ab);;, and random errors e, respectively.

Yy=u+a;+b+(ab); +e; [6]

This analysis partitions the within-animal sum of squares into a
between-measurement sum of squares and an error sum of squares.
Thus, it additionally gives between-measurement mean square
(JMS) and random error mean square (EMS), compared with
model [4].

Various types of ANOVA-based ICC have been defined (Shrout
and Fleiss, 1979). Briefly, ICC1 measures absolute agreement for
fat or protein percentage across single milkings based on a one-way
random effects model; ICC2 assesses consistency among milkings
when both cows and milkings are considered random effects, based
on a 2-d random effects model; ICC3 evaluates consistency for
single milkings while treating milkings are fixed effects, employ-
ing a 2-way mixed-effects model. For the latter 2 scenarios, ICC
are computed as follows:

2

1CC2 = % -
O'j —l—af +O’? —1—03 [7]
BMS — EMS
BMS + (k: - 1) EMS + k(JMS - EMS)/n ’
ey ot o (k1) BMS — EMS 5

o> +02+0>  BMS+(k—1)EMS

Here, ICC2 differs from ICC3 regarding the assumption about b;
and (ab); in equation (6). With ICC2, b, is assumed to be a random
variable following a normal distribution with a zero mean and vari-
ance af, whereas with ICC3, b; is a fixed effect subject to the
1St b2

k—14==11"
With ICC2, all the components can be assumed to be mutually in-
dependent, each with a zero mean and variance O'?, fori=1,...n
and j = 1,...k. In contrast, the ICC3 model assumes independence
only for interaction components involving different animals;
within the same animal, interactions must satisfy the constraint

. k .. . 2
constraint: Z . 1b]. = 0. This implies that o} =
=

Zl;_l (ab)ij = 0. For simplicity, assume that measurement errors
of fat and protein percentages arise solely from the laboratory
analyses. The difference between ICC2 and ICC3 can be viewed in
such a way that the ICC3 model assumes analyzers (machines and
technicians) are fixed, whereas the ICC2 model allows analyzers to
vary randomly. With ICCI1, the analyzers are also considered ran-
dom, selected from a larger available set (m > k).

Further, consistency can be evaluated for the mean across mul-
tiple measurements. For instance, ICC 1k measures absolute agree-
ment for the average of k£ milkings using a one-way random effects
model, assuming milkings are random effects. Typically, averaging
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across multiple milkings enhances consistency. ICC2k evaluates
consistency for the average of &£ milkings, assuming both cows and
milkings are random effects within a 2-way random effects model.
ICC3k assesses consistency for the average of & milkings while
treating milkings as fixed effects, using a 2-way mixed-effects
model. Their ANOVA-based formulas are as follows:

BMS — WMS

ICClk = —> " "2 [9]
BMS
ICC2k = BMS — EMS , [10]
BMS + (JMS — EMS) /n
1CC3k = w [11]
BMS

We refer to equation [1] as Fisher’s ICC and the latter forms (Equa-
tions 5, 6, 7, 8, 9, 10, and 11) as ANOVA-based ICC.

We applied the ICC approach to assess the consistency of fat and
protein percentages in 3-milking-daily samples from 4 dairy farms:
farm 1 (Holstein) and farm 3 (Jersey) in State A, farm 2 (Jersey) in
state B, and farm 4 (Holstein) in state C. These farms were num-
bered according to the order in which they participated in the pres-
ent study from 2023 to 2024. Typically, the 3 milkings occurred in
the early morning (0400-0600 h), midday (1200—1400 h), and late
evening (2000-2200 h), with some variation in exact timing for
practical convenience. Data cleaning removed redundant, missing,
and incomplete data, retaining 48,921 milking records from farm
1, 39,132 records from farm 2, 36,783 records from farm 3, and
40,827 records from farm 4 for subsequent analyses.

Approximately 90% to 92% of the milking records from farms
1, 3, and 4 and ~75% of the records from farm 2 were obtained
from cows in lactations 1 to 4. The mean DIM, along with the
95% CI, were 125 (20-309) in farm 1, 84 (6-203) in farm 2, 156
(3-357) in farm 3, and 141 (9-300) in farm 4. The distributions of
milking interval time were unimodal in the 2 Holstein herds (farms
1 and 4). In comparison, the 2 Jersey herds (farms 2 and 3) exhib-
ited multimodal distributions, likely due to greater variability in
milking interval durations (figures not presented). The mean (SD)
of milking intervals (in hours) for the 3 milkings were 7.25 to 8.79
(0.43-0.50) in farm 1, 7.10 to 8.53 (0.32—1.64) in farm 2, 7.94 to
8.20 (0.62—0.97) in farm 3, and 7.82 to 8.05 (0.19-0.26) in farm 4.

On average, each milking contributed approximately one-third
of the daily milk yield. The mean (SD) of proportional daily milk
yields for the 3 milkings were 0.31 to 0.37 (0.03-0.04) in farm 1,
0.30 to 0.36 (0.04-0.07) in farm 2; 0.33 to 0.34 (0.05) in farm 3,
and 0.32 to 0.34 (0.03-0.04) in farm 4. The reciprocals of these
proportional daily yields provided empirical estimates of multi-
plicative correction factors (MCF) for adjusting daily milk yields
(Wu et al., 2023b). The mean (SD) of empirical MCF across the
3 milkings were 2.75 to 3.30 (0.28-0.36) in farm 1, 2.48 to 2.81
(0.35-0.70) in farm 2, 2.96 to 3.11 (0.25-0.26) in farm 3, and 2.99
to 3.08 (0.36-0.45) in farm 4. The MCF fundamentally depend on
milking interval. Assuming precisely equal intervals between the 3
milkings, the expected MCF would be 3.

Across the 4 farms, fat percentages were higher and exhibited
significantly greater variation than protein percentages among the
3 milkings. The means (SD) of fat percentages for the 3 milkings
were 3.87% to 4.31% (0.69%—0.71%) in farm 1, 4.36% to 5.09%
(0.71%—-0.78%) in farm 2, 5.00% (0.79%-0.93%) in farm 3, and
4.00% to 4.08% (0.67-0.69%) in farm 4. The mean (SD) of pro-
tein percentages were 3.08% to 3.01% (0.30% — 0.31%) in farm
15 3.33% to 3.38% (0.28%—-0.29%) in farm 2; 3.68% to 3.69%
(0.39% — 0.40%) in farm 3; and 3.17% to 3.21% (0.31%-0.32%)
in farm 4. Between the 2 breeds, Jersey cows produced higher fat
and protein percentages than Holstein cows.

Fisher’s and ANOVA-based ICC were computed (Table 1).
For protein percentage, ICC values were generally high across
the 4 farms, except for farm 2. The single-rater ICC for protein
percentage was ~0.93 in farm 1, 0.89 in farm 3, and 0.90 in farm
4, but was notably lower in farm 2 (0.58; Table 1). In contrast, the
single-rater ICC for fat percentage ranged from 0.49 to 0.67 across
the 3 milkings, with substantially lower values in farm 2 (0.02 to
0.10). Averaging fat and protein percentages across the 3 milkings
significantly improved consistency (ICC): 0.75 to 0.86 for fat per-
centages and 0.96 to 0.98 for protein percentages in farms 1, 3, and
4. However, farm 2 showed lower consistency (ICC): 0.06 to 0.24
for fat percentage and 0.81 for protein percentage. Compared with
the ANOVA-based ICC, Fisher’s ICC aligns more closely with
ICC3, where the effects of the 3 milkings are considered fixed and
cow effects are random. Plots of Fisher’s intraclass correlations by
lactation month for fat and protein percentages across the 4 farms
are presented in Figure 1.

In farm 2, pairwise simple correlations between milkings were
moderate (0.375) between milkings 1 and 3, low (0.101) between
milkings 2 and 3, and negative (—0.154) between milkings 1 and 2
(—0.154). In contrast, farm 3, another Jersey dairy farm, exhibited
higher pairwise simple correlations: 0.458 between milkings 1 and
2, 0.431 between milkings 1 and 3, and 0.596 between milkings
2 and 3. For protein percentages, pairwise correlations were also
significantly lower in farm 2 (0.563-0.584) than in farm 3 (0.871—
0.914). These results align with the ICC measure, indicating poten-
tial data quality issues in farm 2 that warrant further investigations.

The interpretative guidance of ICC is practically important. Ac-
cording to Koo and Li (2016), ICC values are classified as poor
(<0.50), moderate (0.50-0.75), good (0.75-0.90), and excellent
(>0.90). A more lenient classification by Cicchetti (1994) defines
ICC values as poor (<0.40), fair (0.40-0.59), good (0.60-0.74),
and excellent (0.75—1.00). Consequently, ICC values below 0.4 or
0.5 often indicate poor data quality. However, applying a universal
threshold to biological traits such as fat and protein percentages
may be debatable, as their genetic determinations differ. Instead,
trait-specific minimum ICC thresholds (e.g., established through
bootstrapping) are preferred. To illustrate, we combined the milk-
ing data from the 2 Holstein farms and computed the 95% confi-
dence interval via 10,000 times of bootstrapping. Each bootstrap
sample (replicate) was generated by sampling with replacement,
retaining the same number of milking records for an average herd
size (317) based on unique cow IDs. This sample size corresponds
to the average herd size of dairy cows (337) in the United States
in 2022 (O’Leary, 2023). The 95% CI for Fisher’s ICC were 0.584
to 0.762 for fat percentages and 0.900 to 0.952 for protein percent-
ages. Thus, a plausible threshold for “good” consistency can be set
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Table 1. Consistency assessment of fat and protein percentages from each thrice-milking in 4 dairy farms

ICC (95% Cl)
Type1 Farm 1 (Holstein) Farm 2 (Jersey) Farm 3 (Jersey) Farm 4 (Holstein)
Fat percentage
Fisher 0.606 (0.599-0.614) 0.096 (0.086-0.107) 0.495 (0.484-0.505) 0.670 (0.662-0.677)
ICC1 0.529 (0.520-0.537) 0.022 (0.012-0.032) 0.494 (0.483-0.504) 0.667 (0.659-0.674)
ICC2 0.545 (0.419-0.638) 0.080 (0.050-0.109) 0.494 (0.484-0.504) 0.667 (0.658-0.677)
ICC3 0.606 (0.598-0.614) 0.097 (0.086-0.108) 0.495 (0.485-0.505) 0.670 (0.663-0.678)
ICC1k 0.771 (0.765-0.777) 0.063 (0.035-0.090) 0.745 (0.737-0.753) 0.857 (0.853-0.861)
1CC2k 0.782 (0.684-0.841) 0.206 (0.138-0.268) 0.745 (0.737-0.753) 0.857 (0.852-0.863)
ICC3k 0.822 (0.817-0.826) 0.243 (0.221-0.266) 0.746 (0.738-0.754) 0.859 (0.855-0.863)

Protein percentage
Fisher
ICC1
ICC2
ICC3
ICC1k
1ICC2k
ICC3k

0.927 (0.926-0.930)
0.927 (0.925-0.929)
0.927 (0.925-0.929)
0.927 (0.926-0.929)
0.974 (0.974-0.975)
0.974 (0.974-0.975)
0.975 (0.974-0.975)

0.583 (0.574-0.592)
0.579 (0.570-0.588)
0.580 (0.568-0.591)
0.584 (0.575-0.592)
0.805 (0.799-0.811)
0.805 (0.798-0.813)
0.808 (0.802-0.802)

0.886 (0.883-0.889)
0.886 (0.883-0.889)
0.886 (0.883-0.889)
0.886 (0.883-0.889)
0.959 (0.958-0.960)
0.959 (0.958-0.960)
0.959 (0.958-0.960)

0.901 (0.898-0.903)
0.899 (0.896-0.902)
0.899 (0.892-0.905)
0.902 (0.899-0.905)
0.964 (0.963-0.965)
0.964 (0.961-0.966)
0.965 (0.964-0.966)

"Fisher = Fisher’s interclass correlation; ICC1-3 and ICC1-3k = ANOVA-based interclass correlations (see equations 5and 7-11).

Fisher’s intraclass correlation

Fisher’s intraclass correlation

Figure 1. Plots of Fisher’s intraclass correlations by lactation months for fat (top) and protein (bottom) percentages in 4 dairy farms (Holstein: farms 1 and 4;

Jersey: farms 2 and 3).
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Table 2. Accuracy assessment for using single-milking fat and protein percentages as proxies of daily yield fat and protein percentages in 4 dairy farms'?

Fat percentage

Protein percentage

Farm a b MSE R? a b MSE R?
1
Milking 1 1.208 (0.014) 0.730 (0.004) 0.162 0.541 0.133 (0.006) 0.959 (0.002) 0.005 0.943
Milking 2 1.118(0.014) 0.740 (0.003) 0.131 0.627 0.144 (0.005) 0.953 (0.002) 0.004 0.954
Milking 3 0.940 (0.015) 0.718 (0.003) 0.209 0.407 0.175 (0.005) 0.941 (0.002) 0.005 0.948
2
Milking 1 2.241(0.016) 0.289 (0.003) 0.727 0.019 0.695 (0013) 0.601 (0.004) 0.024 0.590
Milking 2 2.358(0.017) 0.310 (0.004) 0.539 0.015 0.682 (0.014) 0.596 (0.004) 0.025 0.574
Milking 3 2.286 (0.020) 0.314 (0.004) 0.230 0.082 0.886 (0.015) 0.539 (0.004) 0.021 0.647
3
Milking 1 1.924 (0.024) 0.620 (0.005) 0.270 0.362 0.275 (0.010) 0.926 (0.003) 0.015 0.894
Milking 2 1.540 (0.021) 0.690 (0.004) 0.185 0.563 0.275 (0.008) 0.925 (0.002) 0.011 0.927
Milking 3 1.611(0.021) 0.674 (0.004) 0.202 0.524 0.278 (0.008) 0.925 (0.002) 0.010 0.930
4
Milking 1 0.927 (0.015) 0.770 (0.004) 0.103 0.712 0.167 (0.007) 0.953 (0.002) 0.006 0.935
Milking 2 0.925 (0.016) 0.767 (0.004) 0.117 0.673 0.285 (0.008) 0.905 (0.002) 0.010 0.894
Milking 3 0.923 (0.014) 0.784 (0.003) 0.098 0.724 0.176 (0.006) 0.945 (0.002) 0.005 0.949
Var (y) — MSE

'a,b = intercept and regression coefficient; R? =
and MSE is mean squared error. Var(y)

2For a and b, values are presented as the estimate, with SE in parentheses.

at ~0.58 for fat percentages and 0.90 for protein percentages for
Holstein cattle. It should be noted that this is only an illustration.
More precise thresholds for each dairy breed can be determined
through a comprehensive data analysis incorporating random
samples across multiple geographic regions, herds, years, and
lactations.

Furthermore, daily fat and protein percentages were calculated
as weighted averages of the percentages from each milking, with
weights being the proportional partial daily yields for the 3 milk-
ings per cow. To assess accuracy, we examined the intercept and
slope of the linear regression of daily fat and protein percentages
(y) against the percentages from each milking (x) (Table 2). For
an ideal accuracy assessment, a should be close to zero, indicat-
ing no systematic bias in the predictions. Across the 4 daily farms,
intercept values for fat percentages deviated substantially from
0, ranging from 0.94 to 2.24. This finding suggests potential sys-
tematic biases if partial-yield fat percentages are used as proxies
for daily yield fat percentages, indicating the need for adjustment
across multiple milkings daily. In contrast, intercept values for
protein percentages were close to zero (0.13-0.29), except in farm
2 (0.68-0.89).

The regression slope () represents the change in the actual value
(y) for a unit change in the predicted value (x). Ideally, if x perfectly
predicts y, b should equal 1. Across the 4 daily farms, the regression
slopes for protein percentage were close to 1 (0.91-0.96), except in
farm 2 (0.54-0.60), suggesting minimal systematic biases if using
partial-yield protein percentages as proxies of daily yield protein
percentages. The mean squared errors (MSE) for projected daily
yield protein percentages were very low (0.004—0.015) in farms
1, 3, and 4, but higher (0.021-0.025) in farm 2, likely due to data
quality issues. In contrast, the regression slope for fat percentage
was substantially below 1, ranging from 0.73 to 0.78 in farms 1, 3,
and 4, and from 0.29 to 0.31 in farm 2. A low regression slope for
fat percentage led to under-predicted daily yield fat percentages.
As a result, MSE values for fat percentages were notably larger

,» Where Var (y) represents the phenotypic variance of percentage daily milk components,

(0.94-2.29) across the 4 dairy farms compared with protein per-
centages.

An F-test revealed that the variance of observed milk fat and
protein percentages in farm 2 was significantly lower than in
farm 3, another Jersey farm (P < 2.2 x 10'%). The 95% CI of the
variance ratios between the 2 farms were 0.572 to 0.614 for milk
fat percentage and 0.392 to 0.421 for milk protein percentage. In
contrast, milk fat and protein variances did not differ significantly
between the 2 Holstein farms (P = 0.322 and P = 0.164, respec-
tively), with the 95% CI of 0.952 to 1.02 (milk fat) and 0.946 to
1.01 (milk protein) for the variance ratio between the 2 farms. Con-
cerning the potential cause for the data problem in farm 2, sample
ID mismatches during fat and protein assessments are possible but
unlikely to substantially reduce variance. Instead, systemic errors
such as inadequate milk mixing before sampling or calibration
errors in measurement equipment may be more plausible contribu-
tors. For example, if the equipment for measuring fat and protein
percentages was improperly calibrated or faulty, it could system-
atically report a narrower range of values, reducing variances.
Although additive and independent measurement errors typically
increase variance, systematic or multiplicative errors, particularly
those with adverse scaling effects, can reduce variance. Addition-
ally, clipping due to device range limits could artificially constrain
values, particularly for fat percentages, which are inherently more
variable.

Generalized additive models were employed to examine the ef-
fects of key variables on fat and protein percentages. The results
revealed similar patterns for fat and protein percentages across
the 4 farms. For instance, the results obtained from farm 4 are il-
lustrated in the graphical abstract. The effects of lactation number
exhibited roughly a quadratic polynomial pattern, peaking in the
second lactation. The effects of milking interval time remained
relatively stable between 7 and 9 h but showed drastic variations
beyond this range. The impact of days in milking declined sharply
in the first 2 mo of lactation and increased gradually afterward until
the end of lactation. Finally, milking numbers showed significant
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effects on fat and protein percentage, which were primarily related
to varied milk yields across the 3 milkings, given the 3 relevant
variables included in the model already. Overall, all these effects
are significant, showing nonlinear patterns. Hence, adjustments
accounting for the difference in milking intervals or days in milk
alone may not be sufficient, and more accurate adjustments may
require considering nonlinear calibrations accounting for all key
affecting variables (Liu et al., 2020; Gerke et al., 2025).

In conclusion, we evaluated the consistency of single-milking
fat and protein percentages across thrice-daily milkings. Our
results indicate high consistency of protein percentages but po-
tentially relatively lower consistency with fat percentages across
thrice-daily milkings. Therefore, applying varied adjustments for
fat percentages across multiple milkings is plausible, and nonlinear
adjustments may be more accurate than linear calibrations while
accounting for the effects of key variables such as milk interval
time, DIM, and parity. Adopting alternative sampling or estimating
fat and protein percentage from the mixed daily milk are also plau-
sible solutions. To assess the consistency of intraday fat and protein
percentages, pairwise correlations analyze relationships between 2
measurements at a time, leading to multiple separate correlation
coefficients that do not provide a single summary statistic for
overall agreement. In contrast, ICC aggregates information across
all repeated measures, providing a single reliability estimate that
reflects overall consistency.
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