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Abstract: Dairy cattle milking test plans in the United States and globally have evolved substantially since the 1960s toward cost-effective 
sampling methods. Test-day recording frequencies vary, adapting to the specific management needs of different herds. Typically, a cow is 
milked twice or more daily; however, milk fat and protein percentages are commonly assessed from single-milking samples. In this paper, 
we introduced intraclass correlation coefficients to determine the consistency of intraday milk fat and protein percentages across multiple 
milkings within the same cow. This metric extends beyond simple pairwise correlations, enabling robust comparisons across multiple 
milkings. Various forms of intraclass correlations are also demonstrated. Our results show that although protein percentages exhibit high 
consistency, fat percentages display notable variability throughout the test day. Hence, adjustment factors for milk fat percentage should 
differ according to individual milkings and consider the effects of the milking interval, DIM, and parity. Overall, the results demonstrate 
the utility of intraclass correlation as a consistency measure, providing a valuable tool for assessing the data quality of milk components 
for dairy breeding and management decisions.

Milking test plans have substantially transformed toward cost-
efficient milk sampling strategies since the 1960s in the Unit-

ed States and other countries, mainly to minimize costs associated 
with DHIA supervisor visits (Wu et al., 2023a). The frequency of 
test-day recordings varies, adapting to various herd management 
strategies. Typically, a cow is milked twice or more daily, yet not 
all milkings are weighed and sampled. Fat and protein percentages 
are often assessed on single-milking samples, and adjustments are 
made assuming stable milk compositions across multiple milkings 
daily.

Two metrics are relevant to guide data quality control: reliabil-
ity and accuracy. The former assesses the consistency of multiple 
measurements, indicating whether results are reproducible under 
the same conditions. The latter reflects how closely fat and protein 
percentages from a single milking align with those derived from 
the whole daily milk yields. Statistically, precision is synonymous 
with reliability, measuring random errors, whereas accuracy is in-
terchangeably used with validity, measuring systematic error or the 
closeness of measurements to the “true” values. In this study, we 
propose using the intraclass correlation coefficient (ICC; Bartko, 
1966) as a consistency measure for single-milking fat and protein 
percentages and apply it to accessing the data quality of milk com-
ponents in 4 selected dairy farms.

Intraclass correlation is not new, and human and animal geneti-
cists have used ICC for decades in genetics studies. The degree of 
resemblance between family relatives enables the estimation of 

additive genetic variance, with the proportionate of additive vari-
ance (heritability) serving as a primary determinant of optimal 
breeding methods for genetic improvement (Falconer and Mackay, 
1996). By employing ANOVA, the total observed variance can be 
partitioned into between-family and within-family variances. The 
between-family component reflects the variance of the groups’ 
“true” means relative to the population mean, whereas the within-
family component captures the variance of individuals around their 
family’s true mean. Consequently, the degree of resemblance can 
be expressed by the between-family component as a proportion of 
the total variance, corresponding to the ICC for families. Interclass 
correlation also approximates repeatability without distinguishing 
additive genetic effects from permanent environmental impact, as-
suming fat (protein) percentage is the same trait across multiple 
milkings (Falconer and Mackay, 1996).

Fisher (1954) first introduced the ICC as a modification of the 
Pearson correlation coefficient. To apply it in evaluating the con-
sistency of multiple measurements from different milkings, con-
sider n cows, each assessed for fat (or protein) percentage during 
3 milkings daily on a test day. The intraclass correlation is defined 
as:
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ranges from 0 to 1, with a high value indicating strong consistency 
and a low value suggesting significant variation across multiple 
milkings. Fisher (1954) also proposed assessing the sampling er-
rors of ICC by employing a logarithm transformation of a rational 
function of ICC for cases with k > 2 groups. In this study, we esti-
mated ICC sampling errors using bootstrapping.

The number of cross-products in this expression grows as the 
number of milkings (k) increases, leading to substantially in-
creased computation with equation (1). Attributed to Harris (1913), 
an alternative equivalent form of ICC, yet simpler, is the following:
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Modern ICC is calculated by mean squares based on ANOVA 
(Shrout and Fleiss, 1979). Equation [3] can also be interpreted as 
the fraction of the total variance due to variation between groups. 
Modeling strategies vary; a one-way ANOVA model assumes 
random effects only for the subjects (i.e., cows), whereas a 2-way 
ANOVA model can account for both subjects and raters (i.e., milk-
ings) as sources of variability. Consider a one-way ANOVA model. 
Suppose we have a set of measurements yij, where i = 1, 2,…n is 
the number of cows, and j = 1, 2,…k is the number of repeated 
measurements daily for each cow. Assume equal true values across 
multiple measurements per cow (ai). The observed measurement 
yij can be modeled as

	 yij = μ + ai + wij.	 [4]

Here, ai is defined as the difference from the overall mean (μ) of 
the true value associated with the ith animal, assumed to be nor-
mally distributed with a zero mean and variance σa

2, and wij is a 
residual term, also assumed to be normal with a zero mean and 
variance σw

2 .​ The ICC under this scenario is computed as follows:
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The one-way ANOVA model estimates between-subject mean 
square (BMS) and within-subject mean square (WMS), which are 
then used to σa

2 and σw
2 .. When σw

2  is small, ICC1 approaches 1, 
indicating high measurement consistency. When σw

2  is large, ICC1 

approaches 0, suggesting low consistency among single intraday 
measurements per cow.

The 2-way ANOVA model separates the effects in wij due to 
multiple measurements bi, the interaction between measurements 
and animals (ab)ij, and random errors eij, respectively.

	 yij = μ + ai + bj + (ab)ij + eij.	 [6]

This analysis partitions the within-animal sum of squares into a 
between-measurement sum of squares and an error sum of squares. 
Thus, it additionally gives between-measurement mean square 
(JMS) and random error mean square (EMS), compared with 
model [4].

Various types of ANOVA-based ICC have been defined (Shrout 
and Fleiss, 1979). Briefly, ICC1 measures absolute agreement for 
fat or protein percentage across single milkings based on a one-way 
random effects model; ICC2 assesses consistency among milkings 
when both cows and milkings are considered random effects, based 
on a 2-d random effects model; ICC3 evaluates consistency for 
single milkings while treating milkings are fixed effects, employ-
ing a 2-way mixed-effects model. For the latter 2 scenarios, ICC 
are computed as follows:
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Here, ICC2 differs from ICC3 regarding the assumption about bj 
and (ab)ij in equation (6). With ICC2, bj is assumed to be a random 
variable following a normal distribution with a zero mean and vari-
ance σb

2, whereas with ICC3, bj is a fixed effect subject to the 

constraint: 
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With ICC2, all the components can be assumed to be mutually in-
dependent, each with a zero mean and variance σI

2, for i = 1,…n 
and j = 1,…k. In contrast, the ICC3 model assumes independence 
only for interaction components involving different animals; 
within the same animal, interactions must satisfy the constraint 

j

k
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0. For simplicity, assume that measurement errors 

of fat and protein percentages arise solely from the laboratory 
analyses. The difference between ICC2 and ICC3 can be viewed in 
such a way that the ICC3 model assumes analyzers (machines and 
technicians) are fixed, whereas the ICC2 model allows analyzers to 
vary randomly. With ICC1, the analyzers are also considered ran-
dom, selected from a larger available set (m ≥ k).

Further, consistency can be evaluated for the mean across mul-
tiple measurements. For instance, ICC1k measures absolute agree-
ment for the average of k milkings using a one-way random effects 
model, assuming milkings are random effects. Typically, averaging 
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across multiple milkings enhances consistency. ICC2k evaluates 
consistency for the average of k milkings, assuming both cows and 
milkings are random effects within a 2-way random effects model. 
ICC3k assesses consistency for the average of k milkings while 
treating milkings as fixed effects, using a 2-way mixed-effects 
model. Their ANOVA-based formulas are as follows:

	 ICC k
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,	 [9]
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We refer to equation [1] as Fisher’s ICC and the latter forms (Equa-
tions 5, 6, 7, 8, 9, 10, and 11) as ANOVA-based ICC.

We applied the ICC approach to assess the consistency of fat and 
protein percentages in 3-milking-daily samples from 4 dairy farms: 
farm 1 (Holstein) and farm 3 (Jersey) in State A, farm 2 (Jersey) in 
state B, and farm 4 (Holstein) in state C. These farms were num-
bered according to the order in which they participated in the pres-
ent study from 2023 to 2024. Typically, the 3 milkings occurred in 
the early morning (0400–0600 h), midday (1200–1400 h), and late 
evening (2000–2200 h), with some variation in exact timing for 
practical convenience. Data cleaning removed redundant, missing, 
and incomplete data, retaining 48,921 milking records from farm 
1, 39,132 records from farm 2, 36,783 records from farm 3, and 
40,827 records from farm 4 for subsequent analyses.

Approximately 90% to 92% of the milking records from farms 
1, 3, and 4 and ~75% of the records from farm 2 were obtained 
from cows in lactations 1 to 4. The mean DIM, along with the 
95% CI, were 125 (20–309) in farm 1, 84 (6–203) in farm 2, 156 
(3–357) in farm 3, and 141 (9–300) in farm 4. The distributions of 
milking interval time were unimodal in the 2 Holstein herds (farms 
1 and 4). In comparison, the 2 Jersey herds (farms 2 and 3) exhib-
ited multimodal distributions, likely due to greater variability in 
milking interval durations (figures not presented). The mean (SD) 
of milking intervals (in hours) for the 3 milkings were 7.25 to 8.79 
(0.43–0.50) in farm 1, 7.10 to 8.53 (0.32–1.64) in farm 2, 7.94 to 
8.20 (0.62–0.97) in farm 3, and 7.82 to 8.05 (0.19–0.26) in farm 4.

On average, each milking contributed approximately one-third 
of the daily milk yield. The mean (SD) of proportional daily milk 
yields for the 3 milkings were 0.31 to 0.37 (0.03–0.04) in farm 1, 
0.30 to 0.36 (0.04–0.07) in farm 2; 0.33 to 0.34 (0.05) in farm 3, 
and 0.32 to 0.34 (0.03–0.04) in farm 4. The reciprocals of these 
proportional daily yields provided empirical estimates of multi-
plicative correction factors (MCF) for adjusting daily milk yields 
(Wu et al., 2023b). The mean (SD) of empirical MCF across the 
3 milkings were 2.75 to 3.30 (0.28–0.36) in farm 1, 2.48 to 2.81 
(0.35–0.70) in farm 2, 2.96 to 3.11 (0.25–0.26) in farm 3, and 2.99 
to 3.08 (0.36–0.45) in farm 4. The MCF fundamentally depend on 
milking interval. Assuming precisely equal intervals between the 3 
milkings, the expected MCF would be 3.

Across the 4 farms, fat percentages were higher and exhibited 
significantly greater variation than protein percentages among the 
3 milkings. The means (SD) of fat percentages for the 3 milkings 
were 3.87% to 4.31% (0.69%–0.71%) in farm 1, 4.36% to 5.09% 
(0.71%–0.78%) in farm 2, 5.00% (0.79%–0.93%) in farm 3, and 
4.00% to 4.08% (0.67–0.69%) in farm 4. The mean (SD) of pro-
tein percentages were 3.08% to 3.01% (0.30% – 0.31%) in farm 
1; 3.33% to 3.38% (0.28%–0.29%) in farm 2; 3.68% to 3.69% 
(0.39% – 0.40%) in farm 3; and 3.17% to 3.21% (0.31%–0.32%) 
in farm 4. Between the 2 breeds, Jersey cows produced higher fat 
and protein percentages than Holstein cows.

Fisher’s and ANOVA-based ICC were computed (Table 1). 
For protein percentage, ICC values were generally high across 
the 4 farms, except for farm 2. The single-rater ICC for protein 
percentage was ~0.93 in farm 1, 0.89 in farm 3, and 0.90 in farm 
4, but was notably lower in farm 2 (0.58; Table 1). In contrast, the 
single-rater ICC for fat percentage ranged from 0.49 to 0.67 across 
the 3 milkings, with substantially lower values in farm 2 (0.02 to 
0.10). Averaging fat and protein percentages across the 3 milkings 
significantly improved consistency (ICC): 0.75 to 0.86 for fat per-
centages and 0.96 to 0.98 for protein percentages in farms 1, 3, and 
4. However, farm 2 showed lower consistency (ICC): 0.06 to 0.24 
for fat percentage and 0.81 for protein percentage. Compared with 
the ANOVA-based ICC, Fisher’s ICC aligns more closely with 
ICC3, where the effects of the 3 milkings are considered fixed and 
cow effects are random. Plots of Fisher’s intraclass correlations by 
lactation month for fat and protein percentages across the 4 farms 
are presented in Figure 1.

In farm 2, pairwise simple correlations between milkings were 
moderate (0.375) between milkings 1 and 3, low (0.101) between 
milkings 2 and 3, and negative (−0.154) between milkings 1 and 2 
(−0.154). In contrast, farm 3, another Jersey dairy farm, exhibited 
higher pairwise simple correlations: 0.458 between milkings 1 and 
2, 0.431 between milkings 1 and 3, and 0.596 between milkings 
2 and 3. For protein percentages, pairwise correlations were also 
significantly lower in farm 2 (0.563–0.584) than in farm 3 (0.871–
0.914). These results align with the ICC measure, indicating poten-
tial data quality issues in farm 2 that warrant further investigations.

The interpretative guidance of ICC is practically important. Ac-
cording to Koo and Li (2016), ICC values are classified as poor 
(<0.50), moderate (0.50–0.75), good (0.75–0.90), and excellent 
(>0.90). A more lenient classification by Cicchetti (1994) defines 
ICC values as poor (<0.40), fair (0.40–0.59), good (0.60–0.74), 
and excellent (0.75–1.00). Consequently, ICC values below 0.4 or 
0.5 often indicate poor data quality. However, applying a universal 
threshold to biological traits such as fat and protein percentages 
may be debatable, as their genetic determinations differ. Instead, 
trait-specific minimum ICC thresholds (e.g., established through 
bootstrapping) are preferred. To illustrate, we combined the milk-
ing data from the 2 Holstein farms and computed the 95% confi-
dence interval via 10,000 times of bootstrapping. Each bootstrap 
sample (replicate) was generated by sampling with replacement, 
retaining the same number of milking records for an average herd 
size (317) based on unique cow IDs. This sample size corresponds 
to the average herd size of dairy cows (337) in the United States 
in 2022 (O’Leary, 2023). The 95% CI for Fisher’s ICC were 0.584 
to 0.762 for fat percentages and 0.900 to 0.952 for protein percent-
ages. Thus, a plausible threshold for “good” consistency can be set 
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Table 1. Consistency assessment of fat and protein percentages from each thrice-milking in 4 dairy farms

Type1

ICC (95% CI)

Farm 1 (Holstein) Farm 2 (Jersey) Farm 3 (Jersey) Farm 4 (Holstein)

Fat percentage        
  Fisher 0.606 (0.599–0.614) 0.096 (0.086–0.107) 0.495 (0.484–0.505) 0.670 (0.662–0.677)
  ICC1 0.529 (0.520–0.537) 0.022 (0.012–0.032) 0.494 (0.483–0.504) 0.667 (0.659–0.674)
  ICC2 0.545 (0.419–0.638) 0.080 (0.050–0.109) 0.494 (0.484–0.504) 0.667 (0.658–0.677)
  ICC3 0.606 (0.598–0.614) 0.097 (0.086–0.108) 0.495 (0.485–0.505) 0.670 (0.663–0.678)
  ICC1k 0.771 (0.765–0.777) 0.063 (0.035–0.090) 0.745 (0.737–0.753) 0.857 (0.853–0.861)
  ICC2k 0.782 (0.684–0.841) 0.206 (0.138–0.268) 0.745 (0.737–0.753) 0.857 (0.852–0.863)
  ICC3k 0.822 (0.817–0.826) 0.243 (0.221–0.266) 0.746 (0.738–0.754) 0.859 (0.855–0.863)
Protein percentage        
  Fisher 0.927 (0.926–0.930) 0.583 (0.574–0.592) 0.886 (0.883–0.889) 0.901 (0.898–0.903)
  ICC1 0.927 (0.925–0.929) 0.579 (0.570–0.588) 0.886 (0.883–0.889) 0.899 (0.896–0.902)
  ICC2 0.927 (0.925–0.929) 0.580 (0.568–0.591) 0.886 (0.883–0.889) 0.899 (0.892–0.905)
  ICC3 0.927 (0.926–0.929) 0.584 (0.575–0.592) 0.886 (0.883–0.889) 0.902 (0.899–0.905)
  ICC1k 0.974 (0.974–0.975) 0.805 (0.799–0.811) 0.959 (0.958–0.960) 0.964 (0.963–0.965)
  ICC2k 0.974 (0.974–0.975) 0.805 (0.798–0.813) 0.959 (0.958–0.960) 0.964 (0.961–0.966)
  ICC3k 0.975 (0.974–0.975) 0.808 (0.802–0.802) 0.959 (0.958–0.960) 0.965 (0.964–0.966)

1Fisher = Fisher’s interclass correlation; ICC1–3 and ICC1–3k = ANOVA-based interclass correlations (see equations 5 and 7–11).

Figure 1. Plots of Fisher’s intraclass correlations by lactation months for fat (top) and protein (bottom) percentages in 4 dairy farms (Holstein: farms 1 and 4; 
Jersey: farms 2 and 3).
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at ~0.58 for fat percentages and 0.90 for protein percentages for 
Holstein cattle. It should be noted that this is only an illustration. 
More precise thresholds for each dairy breed can be determined 
through a comprehensive data analysis incorporating random 
samples across multiple geographic regions, herds, years, and 
lactations.

Furthermore, daily fat and protein percentages were calculated 
as weighted averages of the percentages from each milking, with 
weights being the proportional partial daily yields for the 3 milk-
ings per cow. To assess accuracy, we examined the intercept and 
slope of the linear regression of daily fat and protein percentages 
(y) against the percentages from each milking (x) (Table 2). For 
an ideal accuracy assessment, a should be close to zero, indicat-
ing no systematic bias in the predictions. Across the 4 daily farms, 
intercept values for fat percentages deviated substantially from 
0, ranging from 0.94 to 2.24. This finding suggests potential sys-
tematic biases if partial-yield fat percentages are used as proxies 
for daily yield fat percentages, indicating the need for adjustment 
across multiple milkings daily. In contrast, intercept values for 
protein percentages were close to zero (0.13–0.29), except in farm 
2 (0.68–0.89).

The regression slope (b) represents the change in the actual value 
(y) for a unit change in the predicted value (x). Ideally, if x perfectly 
predicts y, b should equal 1. Across the 4 daily farms, the regression 
slopes for protein percentage were close to 1 (0.91–0.96), except in 
farm 2 (0.54–0.60), suggesting minimal systematic biases if using 
partial-yield protein percentages as proxies of daily yield protein 
percentages. The mean squared errors (MSE) for projected daily 
yield protein percentages were very low (0.004–0.015) in farms 
1, 3, and 4, but higher (0.021–0.025) in farm 2, likely due to data 
quality issues. In contrast, the regression slope for fat percentage 
was substantially below 1, ranging from 0.73 to 0.78 in farms 1, 3, 
and 4, and from 0.29 to 0.31 in farm 2. A low regression slope for 
fat percentage led to under-predicted daily yield fat percentages. 
As a result, MSE values for fat percentages were notably larger 

(0.94–2.29) across the 4 dairy farms compared with protein per-
centages.

An F-test revealed that the variance of observed milk fat and 
protein percentages in farm 2 was significantly lower than in 
farm 3, another Jersey farm (P < 2.2 × 10−16). The 95% CI of the 
variance ratios between the 2 farms were 0.572 to 0.614 for milk 
fat percentage and 0.392 to 0.421 for milk protein percentage. In 
contrast, milk fat and protein variances did not differ significantly 
between the 2 Holstein farms (P = 0.322 and P = 0.164, respec-
tively), with the 95% CI of 0.952 to 1.02 (milk fat) and 0.946 to 
1.01 (milk protein) for the variance ratio between the 2 farms. Con-
cerning the potential cause for the data problem in farm 2, sample 
ID mismatches during fat and protein assessments are possible but 
unlikely to substantially reduce variance. Instead, systemic errors 
such as inadequate milk mixing before sampling or calibration 
errors in measurement equipment may be more plausible contribu-
tors. For example, if the equipment for measuring fat and protein 
percentages was improperly calibrated or faulty, it could system-
atically report a narrower range of values, reducing variances. 
Although additive and independent measurement errors typically 
increase variance, systematic or multiplicative errors, particularly 
those with adverse scaling effects, can reduce variance. Addition-
ally, clipping due to device range limits could artificially constrain 
values, particularly for fat percentages, which are inherently more 
variable.

Generalized additive models were employed to examine the ef-
fects of key variables on fat and protein percentages. The results 
revealed similar patterns for fat and protein percentages across 
the 4 farms. For instance, the results obtained from farm 4 are il-
lustrated in the graphical abstract. The effects of lactation number 
exhibited roughly a quadratic polynomial pattern, peaking in the 
second lactation. The effects of milking interval time remained 
relatively stable between 7 and 9 h but showed drastic variations 
beyond this range. The impact of days in milking declined sharply 
in the first 2 mo of lactation and increased gradually afterward until 
the end of lactation. Finally, milking numbers showed significant 
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Table 2. Accuracy assessment for using single-milking fat and protein percentages as proxies of daily yield fat and protein percentages in 4 dairy farms1,2

Farm

Fat percentage

 

Protein percentage

a b MSE R2 a b MSE R2

1
  Milking 1 1.208 (0.014) 0.730 (0.004) 0.162 0.541 0.133 (0.006) 0.959 (0.002) 0.005 0.943
  Milking 2 1.118 (0.014) 0.740 (0.003) 0.131 0.627 0.144 (0.005) 0.953 (0.002) 0.004 0.954
  Milking 3 0.940 (0.015) 0.718 (0.003) 0.209 0.407 0.175 (0.005) 0.941 (0.002) 0.005 0.948

2
  Milking 1 2.241 (0.016) 0.289 (0.003) 0.727 0.019 0.695 (0013) 0.601 (0.004) 0.024 0.590
  Milking 2 2.358 (0.017) 0.310 (0.004) 0.539 0.015 0.682 (0.014) 0.596 (0.004) 0.025 0.574
  Milking 3 2.286 (0.020) 0.314 (0.004) 0.230 0.082 0.886 (0.015) 0.539 (0.004) 0.021 0.647

3
  Milking 1 1.924 (0.024) 0.620 (0.005) 0.270 0.362 0.275 (0.010) 0.926 (0.003) 0.015 0.894
  Milking 2 1.540 (0.021) 0.690 (0.004) 0.185 0.563 0.275 (0.008) 0.925 (0.002) 0.011 0.927
  Milking 3 1.611 (0.021) 0.674 (0.004) 0.202 0.524 0.278 (0.008) 0.925 (0.002) 0.010 0.930

4
  Milking 1 0.927 (0.015) 0.770 (0.004) 0.103 0.712 0.167 (0.007) 0.953 (0.002) 0.006 0.935
  Milking 2 0.925 (0.016) 0.767 (0.004) 0.117 0.673 0.285 (0.008) 0.905 (0.002) 0.010 0.894
  Milking 3 0.923 (0.014) 0.784 (0.003) 0.098 0.724 0.176 (0.006) 0.945 (0.002) 0.005 0.949

1a,b = intercept and regression coefficient; R
Var y MSE

Var y
2 =

( )−
( )

,, where Var (y) represents the phenotypic variance of percentage daily milk components, 
and MSE is mean squared error.
2For a and b, values are presented as the estimate, with SE in parentheses.
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effects on fat and protein percentage, which were primarily related 
to varied milk yields across the 3 milkings, given the 3 relevant 
variables included in the model already. Overall, all these effects 
are significant, showing nonlinear patterns. Hence, adjustments 
accounting for the difference in milking intervals or days in milk 
alone may not be sufficient, and more accurate adjustments may 
require considering nonlinear calibrations accounting for all key 
affecting variables (Liu et al., 2020; Gerke et al., 2025).

In conclusion, we evaluated the consistency of single-milking 
fat and protein percentages across thrice-daily milkings. Our 
results indicate high consistency of protein percentages but po-
tentially relatively lower consistency with fat percentages across 
thrice-daily milkings. Therefore, applying varied adjustments for 
fat percentages across multiple milkings is plausible, and nonlinear 
adjustments may be more accurate than linear calibrations while 
accounting for the effects of key variables such as milk interval 
time, DIM, and parity. Adopting alternative sampling or estimating 
fat and protein percentage from the mixed daily milk are also plau-
sible solutions. To assess the consistency of intraday fat and protein 
percentages, pairwise correlations analyze relationships between 2 
measurements at a time, leading to multiple separate correlation 
coefficients that do not provide a single summary statistic for 
overall agreement. In contrast, ICC aggregates information across 
all repeated measures, providing a single reliability estimate that 
reflects overall consistency.
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