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Graphical Abstract

Summary
Phenotypic errors stemming from various sources, such as measurement inaccuracies or inconsistencies, introduce 
noise and bias into genetic analyses, undermining the precision of genetic parameter estimates and selection 
decisions. This article provides an overview of phenotypic errors and their impacts on genetic evaluations in 
both continuous and categorical traits. We begin by defining errors in response in the context of phenotypic 
measurements and discussing their types and sources. The additive measurement error model is introduced for 
continuous traits to illustrate how phenotypic errors influence the estimation of model effects and variances, 
lowering the heritability and accuracy of genetic predictions. For categorical traits, we show the utility of sensitivity 
and specificity in evaluating data quality, leveraging internal validation datasets to calibrate unofficial tests. 
equalME = a threshold model assuming equal misclassification rates; unequalME = a threshold model assuming  
unequal misclassification rates; w0/ME = a threshold model fitted on the data with zero misclassifications.
Highlights

•	 Errors in the response are explained in the context of mixed effects models.
•	 Linear calibration is demonstrated and applied to calibrate estimated test-day yields.
•	 Misclassification and reclassification probabilities are defined for a binary trait. 
•	 Sensitivity and specificity are demonstrated when calibrating an unofficial test. 
•	 A liability threshold model accounting for heterogeneous misclassifications is described.
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Abstract: Accurate genetic evaluations rely on high-quality phenotypic data; however, measurement errors and data inconsistencies—
such as those arising from unsupervised or incomplete sources—pose challenges to their reliability. This study investigates the effect of 
response errors on genetic evaluations across continuous and categorical traits. We introduce an additive measurement error model to il-
lustrate how phenotypic errors influence genetic effects and variance estimation. Next, we examine a binary trait scenario, demonstrating 
the utility of sensitivity and specificity in adjusting observed incidence rates for misclassified data. To further illustrate genetic evaluation 
in the presence of misclassifications, we proposed a mixed effects liability model assuming unequal sensitivity and specificity or varied 
false-positive and false-negative rates. Our findings underscore the necessity of integrating measurement error models into genetic evalu-
ation frameworks to reduce bias and enhance predictive accuracy.

The emergence of high-throughput phenotyping and unofficial, 
unsupervised data sources has recently transformed phenotypic 

data landscapes, offering opportunities to accelerate genetic prog-
ress and expand trait evaluations. However, these developments 
introduce significant challenges to data reliability and consistency. 
Despite these concerns, there is a growing push toward utilizing 
unsupervised datasets for developing new traits, such as those from 
massive recording programs or wearable sensors (Heringstad and 
Wethal, 2023), and automatic phenotyping of hoof health (Siachos 
et al., 2024) and milking speed (O’Connell et al., 2024). Use of 
milk Fourier transform mid-infrared spectrometry is also expand-
ing, offering new tools for assessing milk’s nutritional quality and 
technological properties (Soyeurt et al., 2023). However, unsuper-
vised data lack the same quality controls as official testing proto-
cols, increasing the risk of phenotyping errors that can compromise 
genetic evaluations and breeding outcomes.

This article provides a technical overview of modeling pheno-
typic errors in continuous and categorical traits. We begin by defin-
ing errors in the response in the context of genetic evaluation and 
discussing their types and sources. An additive measurement error 
model for a continuous trait is introduced to illustrate how phe-
notypic errors influence the estimation of additive genetic effects 
and subsequent variance components. For a binary trait, we show 
the utility of sensitivity and specificity in assessing data quality, 
leveraging internal validation to adjust observed incidence rates. 
A hypothetical example demonstrates the calibration process for 
an unofficial test with significant misclassifications and the subse-
quent adjustment of the observed incidence rate.

Consider the following mixed effects model without measure-
ment errors: 

	 y Xb Zu e= + + .	 [1]

Here, y is a vector of the unobserved response variable, b is a vec-
tor of fixed effects, u G~ ,N 0( ) is a vector of random effects, 
where G A= σu

2 is the additive genetic variance-covariance matrix, 
A is the numerator additive genetic relationship matrix, and σu

2 is 
the common additive genetic effect variance, X and Z are the cor-
responding incidence matrices, and e R~ ,N 0( ) is a vector of re-
siduals, where R I= σe

2 is the residual variance-covariance matrix, 
I is an identity matrix, and σe

2 is the common residual variance. The 
residual covariances are assumed to be nonexistent.

Now, instead of observing y, we observe a noisy version, y*, due 
to measurement errors:

	 y y Xb Zu e* ,= + = + + +( )  	 [2]

where  ~ ,N 0 2Iσ( ) are independent measurement errors with a 

common variance σ
2. Assume E y y y* |( ) = , meaning y* is unbi-

ased for the unobserved y. Then, the observed response follows:

	 y Xb ZGZ R I* ~ , .N ′ + +( )σ2 	 [3]

Thus, the additional noise inflates the variance structure of the 
response, affecting the estimations of fixed and random effects.
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Without adjusting the measurement errors, the BLUP estimate 
of u becomes

ˆ* *u GZ ZGZ R I Xb

GZ ZGZ R I Zu e

G

= + +( ) −( )=
+ +( ) + +( )

=

′

′

−

−

′

′

σ

σ





2
1

2
1

y



ZZ ZGZ R I Zu e GZ ZGZ R I′ ′′ ′+ +( ) +( )+ + +( )− −
σ σ 
2
1

2
1
.

� [4]

In the above, GZ ZGZ R I′ ′ + +( )−σ2
1
 introduces additional 

variability attributable to measurement errors, making it less pre-
cise.

This assumption about measurement errors is typical of the clas-
sic measurement error model, which assumes the distribution of 
observed phenotypes given the true values, p y y* | .( )  An alterna-
tive is the Berkson measurement error model, which instead de-
scribes the distribution of true phenotypes given the observed val-
ues, p y y| *( ) (Buonaccorsi, 2010). In reality, the effects of pheno-
typic errors can be more complex, and various alternative measure-
ment error models are worth considering. For instance, let 
E y y* | ,α( ) = +1α y, where α > 0 is a constant, representing a 
systematic bias in observed responses. A linear error model, 
E y y y* | , ,α β α β( ) = +1 , assumes a linear relationship between 
the observed and the true value, where α is the intercept and β is the 
regression coefficient. Still, nonlinear error models, denoted by 
E g Hy y y* | ; ,( ) = ( )  introduce nonlinear measurement errors, 
where H collectively represents all hyperparameters.

Consider the following linear measurement error model:

	 y y y* | = + +1α β �.	 [5]

Substituting y with Equation [1] gives

y Xb Zu e Xb Zu e

X b Zu e

*

* * * *

= + + +( )+ = +( )+ + +( )
= + +

1 1α β α β β β 

.
� [6]

Here, X X* = ( )1, , b
b

* =












α
β
, u u* = β , and e e* = +β . The ob-

served variances for random effects and residuals (errors) are 
σ β σ

u u*
2 2 2=  and σ β σ σ

e e*
2 2 2 2= +  . The fixed and random effects 

can be obtained by solving the following mixed effects model 
equations:

	
X R X X R Z

Z R X Z R Z G

b

u
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* * * *

*ˆ

ˆ

′

′

′− −

− − −′ +













1 1

1 1 1 **
,












=












−

−

X R y

Z R y

* ′

′

1

1
	 [7]

where G A* = β σ2 2u  and R I* = +( )β2 2 2σ σe  .

Then, the estimated fixed and random effects accounting for 
phenotypic errors are

	 ˆ
ˆ

ˆ ˆ ,b X X X X b X= ( ) −( )−1
1

1

β
α′ ′ ′* * 	 [8]

	 ˆ ˆ ˆ .u u=
1

β
* 	 [9]

The variance components accounting for phenotypic errors are

	 ˆ
ˆ
ˆ ,σ

β
σu u

2
2
21

= * 	 [10]

	 ˆ
ˆ
ˆ ˆ .σ

β
σ σe e

2
2

2 21
= −( )*  	 [11]

The above illustrates the principle of linear error model calibration. 
Calibration typically requires an internal or external sample to as-
sess the relationship between the measured values (prone to error) 
and the true values of the response variable. To demonstrate this 
approach, we apply it to mitigate measurement errors in estimated 
daily milk yields for demonstration. The dataset consists of 15,888 
Holstein milking records from 3,717 animals, randomly sampled 
from 23 herds across 11 US states, covering the first 3 lactations 
between 2006 and 2009 (Wu et al., 2023). Daily milk yields were 
calculated from partial (AM or PM) yields using the DeLorenzo-
Wiggans (D-W; DeLorenzo and Wiggans, 1986) model. The da-
taset was randomly divided into 3 equal portions based on unique 
animal ID. Two-thirds were used to fit the calibration equation, 
whereas the remaining one-third was used to validate the calibra-
tion model.

The linear calibration equations are presented in Table 1. The 
D-W model tended to inflate the variance of estimated daily milk 
yields. The ratio of estimated to actual daily milk yield variances 
ranged from 1.04 to 1.17 for the morning milkings and 1.06 to 1.30 
for the evening milkings. The calibration equations varied across 
lactation months. Applying these linear calibrations increased the 
accuracy of estimated daily milk yields by approximately 1%.

For a categorical trait, measurement errors lead to misclassifica-
tions, altering the observed phenotypic variance. Consider a binary 
disease trait, where the phenotype is often coded as y = 0 (healthy) 
or y = 1 (sick). Let

	 q q* ,= +∆ 	 [12]

where q* is the observed incidence rate, q is the unobserved true 
incidence rate, and Δ denotes the difference between them. Assum-
ing a Bernoulli distribution, the observed variance is

	
Var y q q q q

q q q

* * *

.

( ) = −( )= +( ) − −( )
= −( )+ − −( )

1 1

1 2 2

∆ ∆

∆ ∆ ∆
	 [13]

676Wu et al. | Errors in the response



JDS Communications 2025; 6: 675–680

Here, y* represents an observed phenotype subject to misclassifi-
cation. Compared with the true variance Var y q q( ) = −( )1 , the 

observed variance deviates by ∆ ∆ ∆− −( )>2 02q  and decreases 

if ∆ ∆ ∆− −( )<2 02q .

Let π
y y

p*|
| ,= ( )y y*  which represents the misclassification 

probability of y* given y. Statistically, sensitivity π11|( ) is the con-
ditional probability of observing a positive case when the true sta-
tus is positive:

	 π11 1 1|
* | .= = =( )p y y 	 [14]

Specificity π0 0|( ) is the conditional probability of observing a nega-
tive case when the true status is negative:

	 π0 0 0 0|
* | .= = =( )p y y 	 [15]

Then, the probability of a false negative π01|( ) is 1 minus the sensi-
tivity of the test:

	 π π01 110 1 1|
*

|| .= = =( )= −p y y 	 [16]

The probability of a false positive π1 0|( ) is 1 minus the specificity:

	 π π1 0 0 01 0 1|
*

|| .= = =( )= −p y y 	 [17]

A reliable test often aims for sensitivity and specificity of at least 
90%. However, in practice, the cutoffs for these 2 measures must 
balance the risks of false negatives and false positives.

A Berkson error model specifies the distribution of y given y*, 
known as the reclassification probability or predictive probability:

	 λ
y y

p y y
|

*
* | .= ( ) 	 [18]

This probability describes the true phenotype given the observed 
value. To relate the reclassification probability to the misclassifica-
tion probability, we have

	

λ

π

π π

11

11

11 0 0

1 1
1 1

1

1 1

|
*

*

*

|

| |

|
,

= = =( )=
= =( )
=( )

=

=
+ −( ) −

p y y
p y y

p y

q

q qq( )
,

	 [19]
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p y y
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p y

q

q ||
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0 1−( )q

	 [20]

where q p y= =( )1 . Similarly, we have

	 λ λ01 111| | ,= − 	 [21]

	 λ λ1 0 0 01| | .= − 	 [22]

When misclassifications occur, a naïve inference estimates the 
observed incidence as the sample proportion with y* = 1. The ex-
pected marginal incidence rate is calculated as follows:

	

E q p y

q q

q

* *

| |

| | | .

( ) = =( )
= −( ) −( )+
= + −( )+ −

1

1 1

1 1

0 0 11

11 0 0 0 0

π π

π π π

	 [23]
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Table 1. Linear calibration regression for the daily milk yields estimated using the DeLorenzo and Wiggans (1986) model1

Month in milk

Morning milkings

 

Evening milkings

σy
2 σ

y*
2 K a b σ

2 σy
2 σ

y*
2 K a b σ

2

1 111.2 119.3 1.07 0.238 0.979 12.6 111.2 125.8 1.13 −0.133 1.003 13.9
2 99.8 103.6 1.04 1.234 0.961 11.5 99.8 113.2 1.13 −0.499 1.004 12.5
3 82.6 90.7 1.10 0.110 0.986 10.4 82.6 90.0 1.09 0.640 0.980 10.6
4 69.0 75.2 1.09 2.488 0.936 14.7 69.0 89.7 1.30 −1.843 1.032 16.2
5 62.8 69.1 1.10 1.682 0.955 11.8 62.8 77.7 1.24 −1.242 1.017 12.7
6 54.0 60.9 1.13 1.343 0.963 10.9 54.0 67.8 1.26 −1.359 1.022 11.5
7 55.3 63.5 1.15 0.767 0.970 11.5 55.3 67.4 1.22 −0.396 1.000 12.1
8 54.9 63.2 1.15 0.272 0.986 9.85 54.9 63.6 1.16 0.003 0.984 10.3
9 52.8 62.0 1.17 −0.568 1.018 7.23 52.8 56.9 1.08 0.720 0.962 8.04
10 59.0 62.5 1.06 0.703 0.965 7.67 59.0 69.0 1.17 −0.515 1.013 8.52
11 62.4 73.1 1.17 −0.658 1.020 8.23 62.4 65.9 1.06 0.659 0.961 8.22
12 67.3 73.1 1.09 0.263 0.978 8.74 67.3 75.6 1.12 −0.015 0.993 9.25

1σy
2  = actual daily milk yield (DMY) variance; σ

y*
2  = estimated DMY variance; K y

y

=
σ

σ

*
;

2

2
 a,b = intercept and regression coefficient of the linear regression calibra-

tion equation; σ
2  = error variance.



JDS Communications 2025; 6: 675–680

Because E q q* ,( ) ≠  the difference represents the bias in the naïve 

estimate, ˆ ,*q  as follows:

	 bias ˆ .* *
| | |q E q q q( ) = ( )− = + −( )+ −π π π11 0 0 0 02 1 	 [24]

Rearranging Equation [23] provides the following adjustment 
formula:

	 ˆ
ˆ ˆ

ˆ ˆ
.

*
|

| |

q
q

=
− −( )
+ −

1

1
0 0

11 0 0

π

ππ
	 [25]

where ̂ ,* *q E q= ( )  empirically bounded between 0 and 1 (Buonac-
corsi, 2010). Similarly, by reversing the roles of y and y*, we derive 
an alternative adjustment formula based on reclassification proba-
bilities:

	 ˆ ˆ .*
| | |q q= + −( )+ −λ λ λ11 0 0 0 01 1 	 [26]

A hypothetical example is represented in Table 2, where 2,580 ani-
mals are divided into 2 subsets, representing a double-sampling 
approach. The first subset, consisting of 980 animals, serves as an 
internal calibration set, where animals are diagnosed using the of-
ficial (error-free) and unofficial (error-prone) methods. The second 
subset included 1,600 animals diagnosed only with the unofficial 
test. The overall observed incidence rate was ˆ . %,*q = 14 0  whereas 
in the validation set, the incidence rate was 10.2%.

In the internal validation set, there were 40 false positives among 
the 880 true-negative cases and 3 false negatives among the 100 
true-positive cases. Thus, the sensitivity and specificity are com-

puted as follows: ̂ .|π11
97
97 3

0 970=
+
= ; ̂ . .|π0 0

840
840 40

0 955=
+

=  

Using Equation [25], the observed incidence rate is adjusted to 

ˆ
. .

. .
% . %.q =

− −( )
+ −

× =
0 140 1 0 955

0 970 0 955 1
100 10 3  This calibration de-

creases the incidence rate by 3.7 due to misclassification.
In the double-sampling design, reclassification rates are often 

used (Buonaccorsi, 2010). The reclassification rates are calculated 

as ˆ .|λ11
97

97 40
0 708=

+
=  and ˆ . .|λ0 0

840
840 3

0 996=
+
=  Then, us-

ing Equation [26], the adjusted incidence rate is recalculated as 
ˆ . . . .q = × + −( )+ −



0 140 0 708 0 996 1 1 0 996  × 100% = 10.3%. 

Both approaches yield almost identical adjusted incidence rates in 
this example.

Now, consider the genetic evaluations of a binary trait. Extend-
ing the method from a binary trait to a categorical trait is straight-
forward, involving dealing with multiple thresholds. The threshold 
model assumes a continuous and normally distributed variable, 
known as a liability (η), that delimits the observable phenotypes by 
a threshold τ (Sorensen and Gianola, 2002):

	 y | , .η τ
η τ

=
>







1

0

if

otherwise
	 [27]

The latent reliability variable η is treated as the dependent variable, 
replacing the observed phenotypes in the mixed effects model [1]. 
The threshold is computed as follows:

	 τ = −( )−Φ 1 1 ˆ ,q 	 [28]

where q̂ is the incidence rate.
With misclassifications, the probabilities of observed phenotype 

y* given the latent variable η for the true phenotype are defined as 
follows:

	 p y y*
||= =( )=1 1 11π 	 [29]

	 p y y*
||= =( )= −0 1 1 11π 	 [30]

	 p y y*
||= =( )= −1 0 1 0 0π 	 [31]

	 p y y*
||= =( )=0 0 0 0π 	 [32]

This liability threshold model is similar to the standard threshold 
model (Sorensen and Gianola, 2002) except for the likelihood 
function, which is the following:

L P y y P y l t
i

n

i i i i

i

n

b b, | | , | , | ,* *

|

u y y u*( ) ∝ ( ) = ( ) ( )( )

= −

=

=

∏

∏

1

1 011 π(( ) − − −








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






+1

2 01Φ Φ
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π
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e
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� [33]

The above likelihood extends the likelihood function [2] in Rekaya 
et al. (2001). Our model allows different false-positive and false-
negative rates, whereas Rekaya et al. (2001) assumed a common 
parameter π for misclassifications, enforcing equal false positives 
and false negatives. With a Bayesian implementation via Markov 
chain Monte Carlo (MCMC) simulation, this change requires ad-
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Table 2. An illustrative example of double sampling: y = true status (official 
tests without errors) and y* = phenotype subject to misclassification 
(unofficial tests)

Item     y* = 0 y* = 1 Sum

Internal validation   y = 0 n00 840= n01 40= 880
  y = 1 n10 3= n11 97= 100

Test set   y = ? 1,375 225 1,600
Sum     2,218 362 2,580
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ditionally generating an indicator variable for each animal before 
sampling reliabilities, where δi = 1 if there is a misclassification or 
0 otherwise. The asymmetric misclassification rates can be treated 
as known a priori or unknown to be estimated.

To illustrate how our model works, we simulated a binary dis-
ease trait using a mixed effects, animal model for 643 cows derived 
from a true pedigree consisting of 125 sires and 477 dams (Connor 
et al., 2013). A single, arbitrary fixed-effect variable with 10 levels 
was simulated from a standardized normal distribution. The residu-
als were generated with a multivariate normal distribution: 
e ~ , ,N e0 2Iσ( )  where σe

2 = 1. Additive genetic values were gener-

ated from u ~ , ,N u0 2Aσ( )  where σ σu e
h

h
2

2

2
2

1
=
−

×  and h2 = 0.4. 

The heritability calculated from simulated genetic and residual 
variances was 0.397, slightly lower than the 0.40 due to Monte 
Carlo errors. A latent variable was generated as a sum of the fixed, 
additive genetic, and residual effects. Delimiting the latent variable 
using the 80th quantile of its cumulative distribution as the thresh-
old (τ = 0.865) generated a binary trait with an incidence rate of 
20.06%. Discretizing a continuous phenotype (h2 = 0.362) led to a 
binary trait with a lower heritability (h2 = 0.175). See the upper 
figure of the Graphical Abstract.

Misclassifications were simulated assuming equal (equalME) 
versus unequal (unequalME) false-positive and -negative rates. 
Under equalME, we set π π1 0 01 0 15| | . ,= =  equivalent to setting 
π π0 0 11 0 85| | . .= =  The observed incidence rate was 34.06%. Un-
der unequalME, we set π1 0 0 2| .=  and π01 0 1| . ,=  equivalent to 
letting π0 0 0 8| .=  and π11 0 9| . .=  The observed incidence was 
29.08%. Further, a baseline model fitted the data without misclas-
sifications (wo/ME). Linear and threshold Bayesian models were 
implemented via MCMC simulation (Sorensen and Gianola, 2002). 
We ran 100,000 iterations for each analysis, with a 20,000 burn-in, 
and thinned every tenth iteration.

Introducing errors in the response variable led to decreased 
heritability estimates. On the observable scale, the estimated 
heritabilities were 0.175 (wo/ME), 0.148 (equalME), and 0.134 
(unequalME), reflecting a relatively greater proportion of residual 
variance relative to genetic variance in the presence of misclas-
sifications. On the liability scale, the estimated heritabilities 
were 0.362 (wo/ME), 0.232 (equalME), and 0.190 (unequalME). 
Unequal error rates led to a relatively greater decrease in the heri-
tability estimates. With the residual variance fixed at 1.00, the es-
timated genetic variance decreased from 0.569 (wo/ME) to 0.302 
(equalME) and 0.235 (unequalME). Under both scenarios, the 
correlation between the simulated and estimated breeding values 
decreased from 0.487–0.495 (wo/ME) to 0.336–0.337 (equalME) 
and 0.334–0.339 (unequalME).

Assuming equal error rates, our model is equivalent to the 
model proposed by Rekaya et al. (2001), and both approaches 
produced almost identical results (data not presented). However, 
our model showed some advantages when the 2 types of error rates 
varied. A priori, the adjusted incidence rate was 20.1%, close to the 
simulated value, using Equation [25] assuming unequal sensitivity 
and specificity ( .|π0 0 0 8=  and π11 0 9| . ).=  The posterior incidence 
estimate was 24.3%, with an estimated heritability of 0.356. In 
contrast, when assuming equal sensitivity and specificity ( |π0 0 = 

π11 0 85| . ),=  the adjusted incidence was higher (23.8%). The pos-
terior incidence was 29.2%, with a heritability of 0.248. The former 
model also gave a higher correlation between the simulated and 
estimated breeding values (0.491) than the latter model (0.478). 
Both correlations were higher than those without accounting for 
misclassifications (0.337–0.339). Compared to a baseline model 
without misclassifications, our model, assuming unequal sensitiv-
ity and specificity, exhibited higher correlations in estimated liabil-
ities and genetic values than the model assuming equal sensitivity 
and specificity (Figure 1).

In summary, handling phenotypic errors requires proper calibra-
tion and modeling methods, often through pilot or independent 
studies. Theories related to genetic evaluation and analyses of 
discrete traits offer insights into their potential impact. This study 
does not provide a panacea for dealing with phenotypic errors in all 
scenarios, but it represents a preliminary effort to underscore the 
importance of recognizing and addressing these often-overlooked 
issues. For high-throughput phenotypes in particular, implementing 
validation subsets where a portion of the data is cross-referenced 
against high-accuracy measurements to estimate phenotyping er-
rors would be a good idea. Additionally, hierarchical models or 
Bayesian approaches may be advantageous when working with 
herd-test data of varying reliability because they allow for differ-
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Figure 1. Comparing estimated liabilities (upper) and additive genetic val-
ues between a baseline model without misclassifications and 3 other models 
with nonzero misclassifications. No calibration = a threshold model without 
calibrating misclassifications; equal sensitivity and specificity = a threshold 
model assuming π π0 0 11 0 85| | . ;= =  unequal sensitivity and specificity = a 
threshold model assuming π0 0 0 8| .=  and π11 0 9| . .=
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ential weighting of phenotypic records based on their known or 
estimated accuracy.
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