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Summary
Phenotypic errors stemming from various sources, such as measurement inaccuracies orinconsistencies, introduce
noise and bias into genetic analyses, undermining the precision of genetic parameter estimates and selection
decisions. This article provides an overview of phenotypic errors and their impacts on genetic evaluations in
both continuous and categorical traits. We begin by defining errors in response in the context of phenotypic
measurements and discussing their types and sources. The additive measurement error model is introduced for
continuous traits to illustrate how phenotypic errors influence the estimation of model effects and variances,
lowering the heritability and accuracy of genetic predictions. For categorical traits, we show the utility of sensitivity
and specificity in evaluating data quality, leveraging internal validation datasets to calibrate unofficial tests.
equalME = a threshold model assuming equal misclassification rates; unequalME = a threshold model assuming
unequal misclassification rates; wO/ME = a threshold model fitted on the data with zero misclassifications.
Highlights

« Errors in the response are explained in the context of mixed effects models.

« Linear calibration is demonstrated and applied to calibrate estimated test-day yields.

« Misclassification and reclassification probabilities are defined for a binary trait.

« Sensitivity and specificity are demonstrated when calibrating an unofficial test.

« Aliability threshold model accounting for heterogeneous misclassifications is described.
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Abstract: Accurate genetic evaluations rely on high-quality phenotypic data; however, measurement errors and data inconsistencies—
such as those arising from unsupervised or incomplete sources—pose challenges to their reliability. This study investigates the effect of
response errors on genetic evaluations across continuous and categorical traits. We introduce an additive measurement error model to il-
lustrate how phenotypic errors influence genetic effects and variance estimation. Next, we examine a binary trait scenario, demonstrating
the utility of sensitivity and specificity in adjusting observed incidence rates for misclassified data. To further illustrate genetic evaluation
in the presence of misclassifications, we proposed a mixed effects liability model assuming unequal sensitivity and specificity or varied
false-positive and false-negative rates. Our findings underscore the necessity of integrating measurement error models into genetic evalu-

ation frameworks to reduce bias and enhance predictive accuracy.

he emergence of high-throughput phenotyping and unofficial,

unsupervised data sources has recently transformed phenotypic
data landscapes, offering opportunities to accelerate genetic prog-
ress and expand trait evaluations. However, these developments
introduce significant challenges to data reliability and consistency.
Despite these concerns, there is a growing push toward utilizing
unsupervised datasets for developing new traits, such as those from
massive recording programs or wearable sensors (Heringstad and
Wethal, 2023), and automatic phenotyping of hoof health (Siachos
et al., 2024) and milking speed (O’Connell et al., 2024). Use of
milk Fourier transform mid-infrared spectrometry is also expand-
ing, offering new tools for assessing milk’s nutritional quality and
technological properties (Soyeurt et al., 2023). However, unsuper-
vised data lack the same quality controls as official testing proto-
cols, increasing the risk of phenotyping errors that can compromise
genetic evaluations and breeding outcomes.

This article provides a technical overview of modeling pheno-
typic errors in continuous and categorical traits. We begin by defin-
ing errors in the response in the context of genetic evaluation and
discussing their types and sources. An additive measurement error
model for a continuous trait is introduced to illustrate how phe-
notypic errors influence the estimation of additive genetic effects
and subsequent variance components. For a binary trait, we show
the utility of sensitivity and specificity in assessing data quality,
leveraging internal validation to adjust observed incidence rates.
A hypothetical example demonstrates the calibration process for
an unofficial test with significant misclassifications and the subse-
quent adjustment of the observed incidence rate.

Consider the following mixed effects model without measure-
ment errors:

y=Xb+Zu+e. [1]

Here, y is a vector of the unobserved response variable, b is a vec-
tor of fixed effects, u ~ V (0, G) is a vector of random effects,

where G = AO’2 is the additive genetic variance-covariance matrix,

A is the numerator additive genetic relationship matrix, and O' is
the common additive genetic effect variance, X and Z are the cor-
responding incidence matrices, and e ~ N (0, R) is a vector of re-

siduals, where R = Iaf is the residual variance-covariance matrix,

I is an identity matrix, and af is the common residual variance. The
residual covariances are assumed to be nonexistent.

Now, instead of observing y, we observe a noisy version, y*, due
to measurement errors:

Yy =y+e=Xb+Zu+(e+e), [2]

where ¢ ~ N (07 Io—f) are independent measurement errors with a

. * . . .
common variance 0(2. Assume F (y | y) =y, meaning y* is unbi-

ased for the unobserved y. Then, the observed response follows:

v -~ N (Xb,zcz’ YR+ Iof). 3]

Thus, the additional noise inflates the variance structure of the
response, affecting the estimations of fixed and random effects.
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Without adjusting the measurement errors, the BLUP estimate
of u becomes

i = GZ’(ZGZ’ +R+ 103)71 (y* - Xb) -
GW@GT+RAJ£)4@u+e+Q

- GZ/(267 + R + Iaf)_l (Zu +e) + GZ/(2GZ' + R + Iaf)_l c
(4]

-1
In the above, GZ’ (ZGZ/+R+IU€2) ¢ introduces additional

variability attributable to measurement errors, making it less pre-
cise.

This assumption about measurement errors is typical of the clas-
sic measurement error model, which assumes the distribution of

observed phenotypes given the true values, p ( v | y). An alterna-

tive is the Berkson measurement error model, which instead de-
scribes the distribution of true phenotypes given the observed val-

ues, p ( v y*) (Buonaccorsi, 2010). In reality, the effects of pheno-

typic errors can be more complex, and various alternative measure-
ment error models are worth considering. For instance, let

E (y* | y,a) =la + p, where a > 0 is a constant, representing a
systematic bias in observed responses. A linear error model,
E (y* ly, o, ﬁ) = la + By, assumes a linear relationship between

the observed and the true value, where « is the intercept and £ is the
regression coefficient. Still, nonlinear error models, denoted by

E(y* |y) = g(y;H ), introduce nonlinear measurement errors,

where H collectively represents all hyperparameters.
Consider the following linear measurement error model:

v |y =1a+ By +e [5]
Substituting y with Equation [1] gives
y :1a+5(Xb+Zu+e)+e:(1a+5Xb)+ﬂZu+(ﬂe+e)

=Xb +Zu +e".
[6]

Here, X' = (1, X), b = u = (Su, and e = (e + €. The ob-

!
0Ob
served variances for random effects and residuals (errors) are
O'Z* = 5203 and oj* = ﬂQUS + 062. The fixed and random effects
can be obtained by solving the following mixed effects model
equations:

*

b

A K
u

X Ry
Z'R 'y

X'R'Z
ZR'Z+ G

XRIX"
ZRX"

o 17

where G = AﬂZJi andR" = I(ﬂ%j + 03).

676

Then, the estimated fixed and random effects accounting for
phenotypic errors are

h— %(X/X)*1 (X/X*IS* _ X/m), 8]
ﬁ:%ﬁ. [9]

5 =6t [10)
ﬁ U
&Z:Ai 6% —6 [11]
gFre ¢

The above illustrates the principle of linear error model calibration.
Calibration typically requires an internal or external sample to as-
sess the relationship between the measured values (prone to error)
and the true values of the response variable. To demonstrate this
approach, we apply it to mitigate measurement errors in estimated
daily milk yields for demonstration. The dataset consists of 15,888
Holstein milking records from 3,717 animals, randomly sampled
from 23 herds across 11 US states, covering the first 3 lactations
between 2006 and 2009 (Wu et al., 2023). Daily milk yields were
calculated from partial (AM or PM) yields using the DeLorenzo-
Wiggans (D-W; DeLorenzo and Wiggans, 1986) model. The da-
taset was randomly divided into 3 equal portions based on unique
animal ID. Two-thirds were used to fit the calibration equation,
whereas the remaining one-third was used to validate the calibra-
tion model.

The linear calibration equations are presented in Table 1. The
D-W model tended to inflate the variance of estimated daily milk
yields. The ratio of estimated to actual daily milk yield variances
ranged from 1.04 to 1.17 for the morning milkings and 1.06 to 1.30
for the evening milkings. The calibration equations varied across
lactation months. Applying these linear calibrations increased the
accuracy of estimated daily milk yields by approximately 1%.

For a categorical trait, measurement errors lead to misclassifica-
tions, altering the observed phenotypic variance. Consider a binary
disease trait, where the phenotype is often coded as y = 0 (healthy)
or y =1 (sick). Let

¢ =q+A, [12]

where q* is the observed incidence rate, ¢ is the unobserved true
incidence rate, and A denotes the difference between them. Assum-
ing a Bernoulli distribution, the observed variance is

Var(y*):q*(l—q*)z(q—i—A)(l—q—A)

—q(1-q)+(a-208 - 2. )
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Table 1. Linear calibration regression for the daily milk yields estimated using the DeLorenzo and Wiggans (1986) model’

Morning milkings Evening milkings
Month in milk U; 05* K a b af 0?2/ 03* K a b o*f
1 111.2 119.3 1.07 0.238 0.979 12.6 111.2 125.8 1.13 -0.133 1.003 13.9
2 99.8 103.6 1.04 1.234 0.961 11.5 99.8 113.2 1.13 —0.499 1.004 12.5
3 82.6 90.7 1.10 0.110 0.986 10.4 82.6 90.0 1.09 0.640 0.980 10.6
4 69.0 75.2 1.09 2.488 0.936 147 69.0 89.7 1.30 -1.843 1.032 16.2
5 62.8 69.1 1.10 1.682 0.955 11.8 62.8 77.7 1.24 -1.242 1.017 12.7
6 54.0 60.9 1.13 1.343 0.963 10.9 54.0 67.8 1.26 -1.359 1.022 1.5
7 553 63.5 1.15 0.767 0.970 1.5 553 67.4 1.22 -0.396 1.000 121
8 54.9 63.2 1.15 0.272 0.986 9.85 54.9 63.6 1.16 0.003 0.984 10.3
9 52.8 62.0 1.17 -0.568 1.018 7.23 52.8 56.9 1.08 0.720 0.962 8.04
10 59.0 62.5 1.06 0.703 0.965 7.67 59.0 69.0 117 -0.515 1.013 8.52
11 62.4 73.1 1.17 -0.658 1.020 8.23 62.4 65.9 1.06 0.659 0.961 8.22
12 67.3 73.1 1.09 0.263 0.978 8.74 67.3 75.6 1.12 —-0.015 0.993 9.25

10—2 = actual daily milk yield (DMY) variance; o”, = estimated DMY variance; K = —Z
y

tion equation; af = error variance.

Here, y* represents an observed phenotype subject to misclassifi-
cation. Compared with the true variance Var y) =q (1 — q), the

observed variance deviates by (A — 2¢A — AZ) > 0 and decreases

if(A —9A — AQ) <0.

2
[

T a,b=intercept and regression coefficient of the linear regression calibra-
y

A =p(y|y*)-

[18]
This probability describes the true phenotype given the observed
value. To relate the reclassification probability to the misclassifica-
tion probability, we have

Let w ‘ = p(y* |y)7 which represents the misclassification
yly
probability of y* given y. Statistically, sensitivity (71'1‘1) is the con- p (y =1, y* = 1)
ditional probability of observing a positive case when the true sta- )‘1\1 p (y =1ly = 1) = p =
tus is positive: p(y B 1) [19]
_ T4
T p(y :1|y:1) [14] 7r1‘1q+(1—7r0|0)(1fQ)
Specificity (7‘('0'0) is the conditional probability of observing a nega- . D (y =0, y* = 0)
tive case when the true status is negative: )‘UIO =P (y =0ly = 0) = » (y* _ 0) =
[20]
* oo (1 —
70 = (s =0ly=0). [15] _ w(l=9) ,
(1 — 7T1|1)q + o (1 — q)
Then, the probability of a false negative (70\1) is 1 minus the sensi- o
tivity of the test: where ¢ = p (y = 1). Similarly, we have
X >‘0\1 :1*)‘1\17 [21]
T = ey =0ly=1)=1-m, [16]
)\1‘0 =1- )\0‘0. [22]

The probability of a false positive (7r ) is 1 minus the specificity:

10

771\0:p(y :1|y=0)=177rom. [17]

A reliable test often aims for sensitivity and specificity of at least
90%. However, in practice, the cutoffs for these 2 measures must
balance the risks of false negatives and false positives.

A Berkson error model specifies the distribution of y given y*,
known as the reclassification probability or predictive probability:

When misclassifications occur, a naive inference estimates the

observed incidence as the sample proportion with y* = 1. The ex-
pected marginal incidence rate is calculated as follows:

B(¢)=sls -1
= (L= ) (1= 0) +my0

= q(”m + Moo — 1) +1- Tojo-

(23]
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Table 2. An illustrative example of double sampling: y = true status (official
tests without errors) and y* = phenotype subject to misclassification
(unofficial tests)

Item y' =0 y =1 Sum
Internal validation y=0 Ny, = 840 ny, = 40 880

y=1 77,10:3 n11:97 100
Test set y=7 1,375 225 1,600
Sum 2,218 362 2,580

Because £ (q*) = g, the difference represents the bias in the naive

estimate, (j*, as follows:
bias (q) —E (q) P (7r1|1 + o 2) +1-my [24]

Rearranging Equation [23] provides the following adjustment
formula:

[25]

where (j* =F (q*) ,empirically bounded between 0 and 1 (Buonac-
corsi, 2010). Similarly, by reversing the roles of y and y*, we derive
an alternative adjustment formula based on reclassification proba-
bilities:

i =0 (A + Ay 1)+ 1=y [26]

A hypothetical example is represented in Table 2, where 2,580 ani-
mals are divided into 2 subsets, representing a double-sampling
approach. The first subset, consisting of 980 animals, serves as an
internal calibration set, where animals are diagnosed using the of-
ficial (error-free) and unofficial (error-prone) methods. The second
subset included 1,600 animals diagnosed only with the unofficial

test. The overall observed incidence rate was § = 14.0%, whereas
in the validation set, the incidence rate was 10.2%.

In the internal validation set, there were 40 false positives among
the 880 true-negative cases and 3 false negatives among the 100
true-positive cases. Thus, the sensitivity and specificity are com-

I 0970, = —— — 0.955.

T+3 840 + 40

Using Equation [25], the observed incidence rate is adjusted to
0.140 — (1 - 0.955)

j= x100% = 10.3%. This calibration de-
0.970 + 0.955 — 1

creases the incidence rate by 3.7 due to misclassification.

In the double-sampling design, reclassification rates are often
used (Buonaccorsi, 2010). The reclassification rates are calculated
as A = I _ 708 and Moo = 340 _ .996. Then, us-
97 + 40 840+ 3
ing Equation [26], the adjusted incidence rate is recalculated as

G= [0.140 x (0.708 +0.996 — 1) +1-0.996| x 100% = 10.3%.

puted as follows: ﬁlll =

678

Both approaches yield almost identical adjusted incidence rates in
this example.

Now, consider the genetic evaluations of a binary trait. Extend-
ing the method from a binary trait to a categorical trait is straight-
forward, involving dealing with multiple thresholds. The threshold
model assumes a continuous and normally distributed variable,
known as a liability (), that delimits the observable phenotypes by
a threshold 7 (Sorensen and Gianola, 2002):

1 ifnp>7

yln,Tm= [27]

0 otherwise

The latent reliability variable # is treated as the dependent variable,
replacing the observed phenotypes in the mixed effects model [1].
The threshold is computed as follows:

(28]

where ¢ is the incidence rate.

With misclassifications, the probabilities of observed phenotype
y* given the latent variable # for the true phenotype are defined as
follows:

Py =1ly=1)=m, [29]
ply =0ly=1)=1-m, [30]
ply =1ly=0)=1-m, [31]

ply =0ly=0)=my, [32]

This liability threshold model is similar to the standard threshold
model (Sorensen and Gianola, 2002) except for the likelihood
function, which is the following:

L(b,u | y*) o P(y* | b,u) = szl((y: | yi,)P(yl. | li,t))

—n;:[@—wou)

*

! v\
T—xb—zu
o2
e

’(“Jf ) |

(33]

T—xb—zu
1-|——" +7r0|1<I>

2

g
e

Al Al
T— xl.b —zu
2
€

Al Al
T— xz.b —zu
2
o
€

+ T 1-0

+ (1 7”1\(])@

The above likelihood extends the likelihood function [2] in Rekaya
et al. (2001). Our model allows different false-positive and false-
negative rates, whereas Rekaya et al. (2001) assumed a common
parameter z for misclassifications, enforcing equal false positives
and false negatives. With a Bayesian implementation via Markov
chain Monte Carlo (MCMC) simulation, this change requires ad-

JDS Communications 2025; 6: 675-680
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ditionally generating an indicator variable for each animal before
sampling reliabilities, where J; = 1 if there is a misclassification or
0 otherwise. The asymmetric misclassification rates can be treated
as known a priori or unknown to be estimated.

To illustrate how our model works, we simulated a binary dis-
ease trait using a mixed effects, animal model for 643 cows derived
from a true pedigree consisting of 125 sires and 477 dams (Connor
et al., 2013). A single, arbitrary fixed-effect variable with 10 levels
was simulated from a standardized normal distribution. The residu-
als were generated with a multivariate normal distribution:

e~ N (0, Iaz), where af = 1. Additive genetic values were gener-
2

ated from u ~ N (07 AO’Z), where o2

v =

x o2 and h* = 0.4.
1-n* ¢
The heritability calculated from simulated genetic and residual
variances was 0.397, slightly lower than the 0.40 due to Monte
Carlo errors. A latent variable was generated as a sum of the fixed,
additive genetic, and residual effects. Delimiting the latent variable
using the 80th quantile of its cumulative distribution as the thresh-
old (z = 0.865) generated a binary trait with an incidence rate of
20.06%. Discretizing a continuous phenotype (4> = 0.362) led to a
binary trait with a lower heritability (4*> = 0.175). See the upper
figure of the Graphical Abstract.

Misclassifications were simulated assuming equal (equalME)
versus unequal (unequalME) false-positive and -negative rates.
Under equalME, we set Ty = Top = 0.15, equivalent to setting

Too = T = 0.85. The observed incidence rate was 34.06%. Un-

0lo

der unequalME, we set Ty = 0.2 and 7, = 0.1, equivalent to

ot
letting Too = 0.8 and Ty = 0.9. The observed incidence was
29.08%. Further, a baseline model fitted the data without misclas-
sifications (wo/ME). Linear and threshold Bayesian models were
implemented via MCMC simulation (Sorensen and Gianola, 2002).
We ran 100,000 iterations for each analysis, with a 20,000 burn-in,
and thinned every tenth iteration.

Introducing errors in the response variable led to decreased
heritability estimates. On the observable scale, the estimated
heritabilities were 0.175 (wo/ME), 0.148 (equalME), and 0.134
(unequalME), reflecting a relatively greater proportion of residual
variance relative to genetic variance in the presence of misclas-
sifications. On the liability scale, the estimated heritabilities
were 0.362 (wo/ME), 0.232 (equalME), and 0.190 (unequalME).
Unequal error rates led to a relatively greater decrease in the heri-
tability estimates. With the residual variance fixed at 1.00, the es-
timated genetic variance decreased from 0.569 (wo/ME) to 0.302
(equalME) and 0.235 (unequalME). Under both scenarios, the
correlation between the simulated and estimated breeding values
decreased from 0.487-0.495 (wo/ME) to 0.336-0.337 (equalME)
and 0.334-0.339 (unequalME).

Assuming equal error rates, our model is equivalent to the
model proposed by Rekaya et al. (2001), and both approaches
produced almost identical results (data not presented). However,
our model showed some advantages when the 2 types of error rates
varied. A priori, the adjusted incidence rate was 20.1%, close to the
simulated value, using Equation [25] assuming unequal sensitivity
and specificity (71'0‘0 = 0.8 and Ty = 0.9). The posterior incidence

estimate was 24.3%, with an estimated heritability of 0.356. In
contrast, when assuming equal sensitivity and specificity (71'0‘0 =

679

N

=~ Equal sensitivity and specificity (r=0.963)

==~ No calibration (r=0.909)

=~ Unequal sensitivity and specificity (=0.978)

Estimated liability from baseline model (no misclassifications)
& =]

1.0 e .

.
=&~ Equal sensitivity and specificity (r=0.760)

== No calibration (r=0.540) &

=&~ Unequal sensitivity and specificity (r=0.872)

0.5

(no misclassifications)

0.0

Estimated additive genetic values from baseline model

-0.5 0.0 05

Estimated additive genetic values with or without cali ion for

Figure 1. Comparing estimated liabilities (upper) and additive genetic val-
ues between a baseline model without misclassifications and 3 other models
with nonzero misclassifications. No calibration = a threshold model without
calibrating misclassifications; equal sensitivity and specificity = a threshold
model assuming Too = Ty = 0.85; unequal sensitivity and specificity = a

threshold model assuming 7, , = 0.8 and Ty = 0.9.

0jo

Ty = 0.85), the adjusted incidence was higher (23.8%). The pos-

terior incidence was 29.2%, with a heritability of 0.248. The former
model also gave a higher correlation between the simulated and
estimated breeding values (0.491) than the latter model (0.478).
Both correlations were higher than those without accounting for
misclassifications (0.337-0.339). Compared to a baseline model
without misclassifications, our model, assuming unequal sensitiv-
ity and specificity, exhibited higher correlations in estimated liabil-
ities and genetic values than the model assuming equal sensitivity
and specificity (Figure 1).

In summary, handling phenotypic errors requires proper calibra-
tion and modeling methods, often through pilot or independent
studies. Theories related to genetic evaluation and analyses of
discrete traits offer insights into their potential impact. This study
does not provide a panacea for dealing with phenotypic errors in all
scenarios, but it represents a preliminary effort to underscore the
importance of recognizing and addressing these often-overlooked
issues. For high-throughput phenotypes in particular, implementing
validation subsets where a portion of the data is cross-referenced
against high-accuracy measurements to estimate phenotyping er-
rors would be a good idea. Additionally, hierarchical models or
Bayesian approaches may be advantageous when working with
herd-test data of varying reliability because they allow for differ-

JDS Communications 2025; 6: 675-680
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ential weighting of phenotypic records based on their known or
estimated accuracy.
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